Lý thuyết phép chia số phức


Nhân cả tử và mẫu với a - bi (số phức liên hợp của mẫu).

Cho hai số phức \(c+di\) và \(a+bi\ne 0\).

Khi đó \( \dfrac{c+di}{a+bi}=\dfrac{(c+di)(a-bi)}{a^{2}+b^{2}}=\dfrac{ac+bd}{a^{2}+b^{2}}+\dfrac{ad-bc}{a^{2}+b^{2}}i\)

(Nhân cả tử và mẫu với \(a - bi\) (số phức liên hợp của mẫu)).

Chú ý: Với \(z \ne 0\) ta có:

- Số phức nghịch đảo của \(z\) là: \(z^{-1}=\dfrac{1}{z}= \dfrac{\overline{z} }{|z|^{2}}.\)

- Thương của \(z'\) chia cho \(z\) là:

\( \dfrac{z'}{z}= z'z^{-1}\) \(=  \dfrac{z'\overline{z}}{|z|^{2}}=\dfrac{z'\overline{z}}{z\overline{z}}\)


Bình chọn:
4.2 trên 30 phiếu

Các bài liên quan: - Bài 3. Phép chia số phức

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài