Cùng em học Toán 4 Tuần 32 - Cùng em học Toán 4

Giải câu 5, 6, 7, 8, vui học trang 51, 52


Giải Cùng em học Toán lớp 4 tập 2 tuần 32 câu 5, 6, 7, 8, vui học trang 51, 52 với lời giải chi tiết. Câu 7 : Tính : a) 2/3 + 4/5 = ... ; b)O 8/7 + 9 = ... ; ...

Lựa chọn câu để xem lời giải nhanh hơn

Bài 5

Biểu đồ dưới đây nói về số ngày mưa trong ba tháng năm 2018 ở một huyện: 

Viết tiếp vào chỗ chấm để được câu trả lời đúng:

a) Tháng 5 có ……. ngày mưa, tháng 6 có ……. ngày mưa, tháng 7 có ……. ngày mưa.

b) Tháng ……. có nhiều ngày mưa nhất, tháng ……. có ít ngày mưa nhất.

c) Tháng 7 nhiều hơn tháng 6 ……. ngày  mưa.

d) Số ngày mưa trung bình trong ba tháng trên là ……. ngày.

Phương pháp giải:

- Quan sát biểu đồ đề tìm số ngày mưa trong mỗi tháng, từ đó tìm được tháng có ngày mưa nhiều nhất, tháng có ngày mưa ít nhất.

- Tính số ngày mưa trung bình trong mỗi tháng ta lấy tổng số ngày mưa trong ba tháng chia cho 3.

Lời giải chi tiết:

a) Tháng 5 có 12 ngày mưa, tháng 6 có 15 ngày mưa, tháng 7 có 18 ngày mưa.

b) Tháng 7 có nhiều ngày mưa nhất, tháng 5 có ít ngày mưa nhất.

c) Tháng 7 nhiều hơn tháng 6 ba ngày  mưa. 

d) Số ngày mưa trung bình trong ba tháng trên là 15 ngày mưa (vì (12 + 15 + 18) : 3 = 15).

Bài 6

Điền dấu (>;<;=) thích hợp vào chỗ chấm:

a) \(\dfrac{1}{2} \ldots \dfrac{1}{3}\)

    \(\dfrac{6}{7} \ldots \dfrac{7}{8}\)

    \(\dfrac{{13}}{{12}} \ldots 1\)

b) \(\dfrac{{11}}{8} \ldots \dfrac{7}{5}\)

    \(\dfrac{3}{3} \ldots \dfrac{4}{4}\)

    \(1 \ldots \dfrac{{49}}{{50}}\)

Phương pháp giải:

- Áp dụng các định nghĩa:

+ Phân số có tử số lớn hơn mẫu số thì phân số đó lớn hơn 1.

+ Phân số có tử số nhỏ hơn mẫu số thì phân số đó nhỏ hơn 1.

+ Phân số có tử số bằng mẫu số thì phân số đó bằng 1.

- Trong hai phân số có cùng tử số, phân số nào có mẫu số nhỏ hơn thì phân số đó lớn hơn.

- Muốn so sánh các phân số khác mẫu số ta quy đồng mẫu số các phân số rồi so sánh các phân số sau khi quy đồng.

Lời giải chi tiết:

a) • \(\dfrac{1}{2} > \dfrac{1}{3}\)  

    • \(\dfrac{{13}}{{12}} > 1\)

    •  Ta có: \(\dfrac{6}{7} = \dfrac{{6 \times 8}}{{7 \times 8}} = \dfrac{{48}}{{56}};\)       \( \dfrac{7}{8} = \dfrac{{7 \times 7}}{{8 \times 7}} = \dfrac{{49}}{{56}}\)

    Mà \(\dfrac{{48}}{{56}} < \dfrac{{48}}{{56}}\).  Vậy \(\dfrac{6}{7} < \dfrac{7}{8}\).

b)  

 Ta có:  \(\dfrac{{11}}{8} = \dfrac{{11 \times 5}}{{8 \times 5}} = \dfrac{{55}}{{40}};\)       \( \dfrac{7}{5} = \dfrac{{7 \times 8}}{{5 \times 8}} = \dfrac{{56}}{{40}}\)

Mà \(\dfrac{{55}}{{40}} < \dfrac{{56}}{{40}}\).  Vậy \(\dfrac{{11}}{8} < \dfrac{7}{5}\).

 Ta có: \(\dfrac{3}{3} = 1; \dfrac{4}{4} = 1\)

Mà \(1 = 1\) .  Vậy \(\dfrac{3}{3} = \dfrac{4}{4}\).

 \(1 > \dfrac{{49}}{{50}}\).

Bài 7

Tính:

a) \(\dfrac{2}{3} + \dfrac{4}{5} = \ldots \)                               \(\dfrac{8}{7} + 9 =  \ldots \)

b) \(\dfrac{8}{5} - \dfrac{2}{3} =  \ldots \)                                \(7 - \dfrac{3}{{10}} =  \ldots \)

Phương pháp giải:

- Muốn cộng (hoặc trừ) hai phân số khác mẫu số, ta quy đồng mẫu số hai phân số, rồi cộng (hoặc trừ) hai phân số đó.

- Muốn cộng (hoặc trừ)  số tự nhiên với phân số, ta viết số tự nhiên dưới dạng phân số có mẫu số là 1 rồi thực hiện phép cộng (hoặc trừ) hai phân số như thông thường.

Lời giải chi tiết:

a) \(\dfrac{2}{3} + \dfrac{4}{5} = \dfrac{{10}}{{15}} + \dfrac{{12}}{{15}} = \dfrac{{22}}{{15}}\)

    \(\dfrac{8}{7} + 9 = \dfrac{8}{7} + \dfrac{9}{1} = \dfrac{8}{7} + \dfrac{{63}}{7} = \dfrac{{71}}{7}\)

b) \(\dfrac{8}{5} - \dfrac{2}{3} = \dfrac{{24}}{{15}} - \dfrac{{10}}{{15}} = \dfrac{{14}}{{15}}\)

    \(7 - \dfrac{3}{{10}} = \dfrac{7}{1} - \dfrac{3}{{10}} = \dfrac{{70}}{{10}} - \dfrac{3}{{10}} \)\(= \dfrac{{67}}{{10}}\)

Bài 8

Tìm \(x\):

\(\dfrac{4}{3} + x = 3\)

\(\dfrac{9}{4} - x = \dfrac{1}{3}\)

\(x - \dfrac{3}{4} = \dfrac{5}{2}\)

Phương pháp giải:

Xác định vị trí của \(x\) rồi tìm \(x\) theo một số quy tắc như:

- Muốn tìm số hạng chưa biết ta lấy tổng trừ đi số hạng đã biết.

- Muốn tìm số trừ ta lấy số bị trừ trừ đi hiệu.

- Muốn tìm số bị trừ ta lấy hiệu cộng với số trừ.

Lời giải chi tiết:

\(\begin{array}{l}\dfrac{4}{3} + x = 3\\\,\,\,\,\,\,\,\,\,\,\,\,\,x = 3 - \dfrac{4}{3}\\\,\,\,\,\,\,\,\,\,\,\,\,\,x = \dfrac{5}{3}\end{array}\)

\(\begin{array}{l}\dfrac{9}{4} - x = \dfrac{1}{3}\\\,\,\,\,\,\,\,\,\,\,\,\,\,x = \dfrac{9}{4} - \dfrac{1}{3}\\\,\,\,\,\,\,\,\,\,\,\,\,\,x = \dfrac{{23}}{{12}}\end{array}\)

\(\begin{array}{l}x - \dfrac{3}{4} = \dfrac{5}{2}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \dfrac{5}{2} + \dfrac{3}{4}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \dfrac{{13}}{{4}}\end{array}\) 

Vui học

Giải bài toán:

Một người đưa hàng nhận được \(12\) đơn hàng. Buổi sáng người đó hoàn thành được \(\dfrac{2}{3}\) số đơn hàng. Buổi chiều người đó hoàn thành được \(\dfrac{1}{4}\) số đơn hàng. Hỏi sau hai buổi người đó còn lại bao nhiêu đơn hàng chưa hoàn thành?

Phương pháp giải:

- Tìm số đơn hàng người đó hoàn thành được trong buổi sáng ta lấy tổng số đơn hàng nhân với \(\dfrac{2}{3}\), tức là lấy \(12\) nhân với \(\dfrac{2}{3}\).

- Tìm số đơn hàng người đó hoàn thành được trong buổi chiều ta lấy tổng số đơn hàng nhân với \(\dfrac{1}{4}\), tức là lấy \(12\) nhân với \(\dfrac{1}{4}\).

- Tìm số đơn hàng chưa hoàn thành sau 2 buổi ta lấy tổng số đơn hàng ban đầu trừ đi số đơn hàng hoàn thành được trong hai buổi.

Lời giải chi tiết:

Buổi sáng người đó hoàn thành được số đơn hàng là:

\(12 \times \dfrac{2}{3} = 8\) (đơn hàng)

Buổi chiều người đó hoàn thành được số đơn hàng là:

\(12 \times \dfrac{1}{4} = 3\) (đơn hàng)

Sau hai buổi người đó còn lại số đơn hàng chưa hoàn thành là:

\(12 - (8 + 3) = 1\) (đơn hàng)

                     Đáp số:  \(1\) đơn hàng.

Loigiaihay.com


Bình chọn:
4.4 trên 19 phiếu

Các bài liên quan:

Luyện Bài tập trắc nghiệm môn Toán lớp 4 - Xem ngay

>> Học trực tuyến các môn Toán, Tiếng Việt, Tiếng Anh lớp 4 trên Tuyensinh247.com mọi lúc, mọi nơi cùng Cô giáo giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài