Đề kiểm 15 phút - Đề số 9 - Bài 5 - Chương 3 - Hình học 9

Bình chọn:
4.9 trên 7 phiếu

Giải Đề kiểm 15 phút - Đề số 9 - Bài 5 - Chương 3 - Hình học 9

Đề bài

Cho đường  tròn (O). Từ điểm P bên ngoài đường tròn kẻ cát tuyến PAB và hai tiếp tuyến PM, PN với (O) (M thuộc cung nhỏ AB). Lấy D là điểm chính giữa của cung lớn AB, DM cắt AB tại I.

a)Chứng minh: \(PM = PI\).           

b) Chứng minh: \(IA.NB = IB.NA\)

Lời giải chi tiết

a) Ta có \(\widehat {PMD} = \dfrac{{sd\overparen{DA} + sd\overparen{MA}}}{ 2}\) ( góc giữa tiếp tuyến và một dây)

\(\widehat {PIM} = \dfrac{{sd\overparen{DB} + sd\overparen{MA}}}{ 2}\) ( góc có đỉnh bên trong đường tròn)

Mà \(\overparen{ DB} = \overparen{ DA}\) (gt) \( \Rightarrow \widehat {PMD} = \widehat {PIM}\)

Do đó \(∆PMI\) cân tại đỉnh P \( \Rightarrow PM = PI.\)

b) \(PM = PN\) ( (tính chất hai tiếp tuyến cắt nhau)

Mà \(PM = PI\) (cmt)  \( \Rightarrow PN = PI\) nên \(∆PNI\) cân \( \Rightarrow \widehat {PNI} = \widehat {PIN}\)

Mà \(\widehat {PNI} = \widehat {PNA} + \widehat {ANI}\) và \(\widehat {PIN} = \widehat {INB} + \widehat B\) ( góc ngoài của ∆NIB)

Mà \(\widehat B = \widehat {PNA}\) (góc nội tiếp bằng góc giữa tiếp tuyến và một dây)

\( \Rightarrow \widehat {ANI} = \widehat {INB}\) hay NI là phân giác của \(∆ANB.\)

Theo tính chất đường phân giác, ta có :

\(\dfrac{{IA}}{{IB}} = \dfrac{{NA} }{ {NB}}\)

\( \Rightarrow  IA.NB = IB.NA.\)

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com