Đề kiểm 15 phút - Đề số 8 - Bài 5 - Chương 3 - Hình học 9

Bình chọn:
4.9 trên 7 phiếu

Giải Đề kiểm 15 phút - Đề số 8 - Bài 5 - Chương 3 - Hình học 9

Đề bài

Cho đường tròn (O; R) đường kính AB. Lấy C thuộc đường tròn sao cho\(\widehat {COB} = 60^\circ \). Gọi I là điểm chính giữa của cung CB và M là giao điểm của OB và CI.

a) Tính \(\widehat {CMO}\).

b) Kẻ đường cao AH của ∆COM. Tính độ dài OM theo R.

Lời giải chi tiết

a) Ta có : \(sd\overparen{COB} = {60^o}\) (gt)

\( \Rightarrow sd\overparen{CB} = {60^o}\)

Do đó \(sd\overparen{AC} = 180^o - 60^o = 120^o\)

I là điểm chính giữa cung CB nên

\(sd\overparen{IC} = sd\overparen{IB} = \dfrac{{sdCB}}{2} = {30^o}\)

Vậy \(\widehat {CMO} = \dfrac{{sdAC - sdIB}}{2}\)\(\, = \dfrac{{{{120}^o} - {{30}^o}}}{2} = {45^o}\) ( góc có đỉnh bên ngoài đường tròn).

b) \(∆OCB\) cân có \(\widehat {COB} = 60^\circ \) nên là tam giác đều.

Do đó đường cao CH đồng thời là đường trung tuyến

Hay \(HO = HB = \dfrac{R }{2}\) và \(CH = OC.\sin 60^\circ  = \dfrac{{R\sqrt 3 } }{2}.\)

Tam giác CHM vuông có \(\widehat {CMO} = 45^\circ \) (cmt) nên là tam giác vuông cân

\(\Rightarrow HM = CH = \dfrac{{R\sqrt 3 }}{2}.\)

Do đó\(OM = OH + HM = \dfrac{R}{2} +\dfrac {{R\sqrt 3 } }{ 2}\)\(\, = \dfrac{{R\left( {1 + \sqrt 3 } \right)} }{ 2}.\)

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com