Đề kiểm 15 phút - Đề số 5 - Bài 4 - Chương 4 - Đại số 9

Bình chọn:
4.9 trên 7 phiếu

Giải Đề kiểm 15 phút - Đề số 5 - Bài 4 - Chương 4 - Đại số 9

Đề bài

Bài 1: Tìm m để phương trình \({x^2} - \left( {{m^2} + m} \right)x - 2 = 0\) có nghiệm.

Bài 2: Viết phương trình đường thẳng qua điểm \((0;− 2)\) và tiếp xúc với parabol \(y = 2{x^2}\) (P ).

Bài 3: Tìm giá trị lớn nhất của biểu thức \(y = {x \over {{x^2} + 1}}.\)

Lời giải chi tiết

Bài 1: Ta có  các hệ số: \(a = 1; c = − 2.\) Vì vậy \(a.c = − 2 < 0\) \( \Rightarrow {b^2} - 4ac > 0\), hay \({\left( {{m^2} + m} \right)^2} + 8 > 0,\) với mọi m.

Vậy phương trình luôn có nghiệm với mọi m.

Bài 2: Phương trình đường thẳng qua điểm \((0; − 2)\) có tung độ gốc bằng \(– 2\) là: \(y = kx – 2\) (d)

Xét phương trình hoành độ giao điểm ( nếu có) của (P ) và (d):

\(2{x^2} = kx - 2 \)\(\;\Leftrightarrow 2{x^2} - kx + 2 = 0\,\,\,\,\,\left( * \right)\)

(P ) và (d) tiếp xúc với nhau khi và chỉ khi phương trình (*) có nghiệm kép

\( \Leftrightarrow \Delta  = 0 \Leftrightarrow {k^2} - 16 = 0 \Leftrightarrow k =  \pm 4.\)

Phương trình đường thẳng đi qua điểm \((0; − 2)\) và tiếp xúc với (P ) là :

\(y =  \pm 4x - 2.\)

Bài 3: Mẫu số : \({x^2} + 1 \ne 0\), với mọi x.

Vậy : \(y = {x \over {{x^2} + 1}} \Leftrightarrow y{x^2} + y = x \)

\(\Leftrightarrow y{x^2} - x + y = 0\,\,\,\,\left( * \right)\)

Ta xem phương trình (*) là phương trình bậc hai của x, còn y là tham số.

+) Nếu \(y = 0\), phương trình (*) có nghiệm \(x = 0.\)

+) Nếu \(y \ne 0\), phương trình (*) có nghiệm \(\Rightarrow ∆ ≥ 0\)

\(1 - 4{y^2} \ge 0 \Leftrightarrow {y^2} \le {1 \over 4} \)

\(\Leftrightarrow \left| y \right| \le {1 \over 2} \Leftrightarrow  - {1 \over 2} \le y \le {1 \over 2}\)

Vậy giá trị lớn nhất của y là \({1 \over 2}\), dấu “=” xảy ra khi và chỉ khi :

\({1 \over 2}{x^2} - x + {1 \over 2} = 0 \Leftrightarrow x = 1.\)

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com