Đề kiểm 15 phút - Đề số 3 - Bài 1 - Chương 4 - Đại số 9

Bình chọn:
4.9 trên 7 phiếu

Giải Đề kiểm 15 phút - Đề số 3 - Bài 1 - Chương 4 - Đại số 9

Đề bài

Bài 1: Cho đồ thị hai hàm số \(y = {x^2}\) (P) và \(y = 2x \) (d). Tìm tọa độ giao điểm của (P) và (d).

Bài 2: Cho hàm số \(y =  - {1 \over 4}{x^2}.\) Biết rằng điểm \(M(m; − 1)\) thuộc đồ thị của hàm số. Tìm m.

Bài 3:

a) Vẽ đồ thị của hàm số \(y = 2{x^2}.\)

b) Với giá trị nào của m thì đường thẳng \(y = m\) không cắt đồ thị của hàm số \(y = 2{x^2}.\)

Lời giải chi tiết

Bài 1: Phương trình hoành độ giao điểm của (P) và (d) :

\({x^2} = 2x \Leftrightarrow {x^2} - 2x = 0 \)

\(\Leftrightarrow x\left( {x - 2} \right) = 0 \)

\(\Leftrightarrow \left[ \matrix{  x = 0 \hfill \cr  x = 2 \hfill \cr}  \right.\)

Ta có các giao điểm : \(O(0; 0)\) và \(M(2; 4)\).

Bài 2: \(M(m; − 1)\) thuộc đồ thị nên \( - 1 =  - {1 \over 4}{m^2} \Leftrightarrow {m^2} = 4 \Leftrightarrow m =  \pm 2.\)

Bài 3: a) Bảng giá trị :

x

− 1

\( - {1 \over 2}\)

0

\({1 \over 2}\)

1

y

2

\({1 \over 2}\)

0

\({1 \over 2}\)

2

Đồ thị của hàm số là parabol có đỉnh là O và nhận trục Oy làm trục đối xứng.

b) Đồ thị (P) của hàm số \(y = 2{x^2}\) nằm phía trên của trục \(Ox\). Đường thẳng (d): \(y = m\) là đường thẳng song song với trục \(Ox\). Vậy \(m < 0\) thì (d) và (P) không cắt nhau.

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

Các bài liên quan: - Bài 1. Hàm số y = ax^2 (a ≠ 0)

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com