Đề kiểm 15 phút - Đề số 2 - Bài 6 - Chương 4 - Đại số 9

Bình chọn:
4.9 trên 7 phiếu

Giải Đề kiểm 15 phút - Đề số 2 - Bài 6 - Chương 4 - Đại số 9

Đề bài

Bài 1: Không giải phương trình, chứng tỏ phương trình \(2{x^2} - 3x - 6 = 0\) có hai nghiệm phân biệt \(x_1; x_2\). Tính \(x_1^3 + x_2^3.\)

Bài 2: Tìm m để phương trình \({x^2} - 2x + m = 0\) có hai nghiệm phân biệt và cùng dương.

Bài 3: Tìm m để phương trình \({x^2} + 2x + m = 0\) có hai nghiệm \(x_1; x_2\) thỏa mãn \(3{x_1} + 2{x_2} = 1.\)

Lời giải chi tiết

Bài 1: Ta có các hệ số : \(a = 2; b = − 3; c = − 6\). Vì \(ac = 2.\left( { - 6} \right) < 0 \Rightarrow \Delta  = {b^2} - 4ac > 0\) nên phương trình có hai nghiệm phân biệt \(x_1; x_2\). Theo định lí Vi-ét, ta có :

\({x_1} + {x_2} = {3 \over 2};\,\,\,\,\,{x_1}{x_2} =  - 3\)

Vậy \(x_1^3 + x_2^3 = {\left( {{x_1} + {x_2}} \right)^3} \)\(\;- 3{x_1}{x_2}\left( {{x_1} + {x_2}} \right) = {{135} \over 8}.\)

Bài 2: Phương trình có hai nghiệm phân biệt và cùng dương

\( \Leftrightarrow \left\{ \matrix{  \Delta ' > 0 \hfill \cr  P > 0 \hfill \cr  S > 0 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  1 - m > 0 \hfill \cr  m > 0 \hfill \cr  2 > 0 \hfill \cr}  \right. \)\(\;\Leftrightarrow 0 < m < 1.\)

Bài 3: Phương trình có nghiệm khi và chỉ khi \(\Delta ' \ge 0 \Leftrightarrow 1 - m \ge 0 \Leftrightarrow m \le 1\). Theo định lí Vi-ét, ta có : \({x_1} + {x_2} =  - 2\) và \(x_1.x_2=m\)

Xét hệ : \(\left\{ \matrix{  {x_1} + {x_2} =  - 2 \hfill \cr  3{x_1} + 2{x_2} = 1 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  {x_1} = 5 \hfill \cr  {x_2} =  - 7 \hfill \cr}  \right.\)

Vậy \(x_1. x_2=m\)\(\; \Leftrightarrow 5.( - 7) = m \Leftrightarrow m =  - 35\) ( thỏa mãn điều kiện \(m ≤ 1\)).

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com