Lý thuyết phương trình đường tròn


1.Lập phương trình đường tròn có tâm và bán kính cho trước

1.Lập phương trình đường tròn có tâm và bán kính cho trước

Phương trình đường tròn có tâm \(I(a; b)\), bán kính \(R\) là :

    $${(x - a)^2} + {(y - b)^2} = {R^2}$$

2. Nhận xét

Phương trình đường tròn  \({(x - a)^2} + {(y - b)^2} = {R^2}\)  có thể được viết dưới dạng 

                             $${x^2} + {y^2} - 2ax - 2by + c = 0$$

trong đó \(c = {a^2} + {b^2} + {R^2}\)

Ngược lại, phương trình \({x^2} + {y^2} - 2ax - 2by + c = 0\) là phương trình của đường tròn \((C)\) khi và chỉ khi  \({a^2} + {b^2}-c>0\). Khi đó đường tròn \((C)\) có tâm  \(I(a; b)\) và bán kính \(R = \sqrt{a^{2}+b^{2} - c}\)

3.Phương trình tiếp tuyến của đường tròn

Cho điểm \({M_0}({x_0};{y_0})\) nằm trên đường tròn \((C)\) tâm  \(I(a; b)\).Gọi \(∆\) là tiếp tuyến với \((C)\) tại \(M_0\)

Ta có \(M_0\) thuộc \(∆\) và vectơ \(\vec{IM_{0}}=({x_0} - a;{y_0} - b)\) là vectơ  pháp tuyến cuả \( ∆\)

Do đó  \(∆\) có phương trình là :  

$$({x_0} - a)(x - {x_0}) + ({y_0} - b)(y - {y_0}) = 0$$

Phương trình (1) là phương trình tiếp tuyến của đường tròn \({(x - a)^2} + {(y - b)^2} = {R^2}\)  tại điểm \(M_0\) nằm trên đường tròn.

Đã có lời giải Sách bài tập - Toán lớp 10 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 10, mọi lúc, mọi nơi cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu