Lý thuyết phép chia số phức

Bình chọn:
3.4 trên 5 phiếu

Nhân cả tử và mẫu với a - bi (số phức liên hợp của mẫu).

\( \frac{c+di}{a+bi}=\frac{(c+di)(a-bi)}{a^{2}+b^{2}}=\frac{ac+bd}{a^{2}+b^{2}}+\frac{ad-bc}{a^{2}+b^{2}}i\)

(Nhân cả tử và mẫu với \(a - bi\) (số phức liên hợp của mẫu)).

Chú ý: Với \(z \ne 0\) ta có:

- Số phức nghịch đảo của \(z\): \(z^{-1}\)=  \( \frac{1}{|z|^{2}}\overline{z}.\)

- Thương của \(z'\) chia cho \(z\): \( \frac{z'}{z}= z'z^{-1}\)= \( \frac{z'\overline{z}}{|z|^{2}}=\frac{z'\overline{z}}{z\overline{z}}\) 

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan