Lý thuyết Hàm số y = ax^2 (a ≠ 0)


Tập xác định của hàm số

A. Kiến thức cơ bản:

1. Tập xác định của hàm số \(y = a{x^2}\) \((a ≠ 0)\) xác định với mọi giá trị của \(x ∈ R\).

2. Tính chất:

- Nếu \(a > 0\) thì hàm số nghịch biến khi \(x < 0\) và đồng biến khi \(x > 0\).

- Nếu \(a < 0\) thì hàm số đồng biến khi \(x < 0\) và nghịch biến khi \(x > 0\).

3. Nhận xét:

- Nếu \(a > 0\) thì \(y > 0\) với mọi \(x ≠ 0; y = 0\) khi \(x = 0\). Giá trị nhỏ nhất của hàm số \(y = 0\).

- Nếu \(a < 0\) thì \(y < 0\) với mọi \(x ≠ 0; y = 0\) khi \(x = 0\). Giá trị lớn nhất của hàm số là \(y = 0\).

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu