Câu 5 trang 126 SGK Hình học 11


Cho hình lập phương ABCD.A'B'C'D' có E và F lần lượt là trung điểm của các cạnh AB và Đ'. Hãy xác định các thiết diện của hình lập phương cắt bởi các mặt phẳng (EFB), (EFC), (EFC') và (EFK) với K là trung điểm của cạnh B'C'

Bài 5. Cho hình lập phương \(ABCD.A'B'C'D'\) có \(E\) và \(F\) lần lượt là trung điểm của các cạnh \(AB\) và \(DD'\). Hãy xác định các thiết diện của hình lập phương cắt bởi các mặt phẳng \((EFB)\), \((EFC)\), \((EFC')\) và \((EFK)\) với \(K\) là trung điểm của cạnh \(B'C'\)

Giải

- Mặt phẳng \((EFB)\) chứa cạnh \(AB\) nên \((EFB) ∩ (DCC'D')\) theo giao tuyến \(GF // AB\).

Ta có thiết diện là hình chữ nhật \(ABGF\) như hình dưới đây:

- Trong mặt phẳng \((ABCD), CE ∩ DA\) tại \(J\). Trong mặt phẳng \((ADD’A’)\) có \(JF ∩ AA’\) tại \(I\).

Thiết diện cần dựng là hình thang \(CFIE\) (\(IE // FC\)) như hình dưới đây:

- Trong mặt phẳng \((ADD’A’)\), \(A’F ∩ AD\) tại \(K\). Trong mặt phẳng \((ABCD), EK ∩ DC\) tại \(H\).

Thiết diện cần dựng là hình thang \(A’FHE\) như hình dưới đây:

- Trong mặt phẳng \((DCC’D’)\), \(C’F’ ∩ CD\) tại \(M\). Trong mặt phẳng \((ABCD)\), \(EM ∩ AD\) tại \(N\), \(FN\) là giao tuyến của mặt phẳng \((C’EF)\) với mặt bên \((ADD’A’)\).

Trong mặt phẳng \((ABCD)\), \(ME ∩ BC\) tại \(Q\). Trong mặt phẳng \((BCC’B’)\), \(C’Q ∩ BB’\) tại \(P\).

Thiết diện cần dựng là hình ngũ giác \(C’PENF\) như hình dưới đây:

- Gọi \(E, H, F, I, K, J\) theo thứ tự là trung điểm của \(AB, AD, DD’, D’C’, C’B’, BB’\). Ta dễ dàng chứng minh được 6 điểm \(E, H, F, I, K, J\) nằm trên cùng một mặt phẳng. Mặt phẳng này chính là mặt phẳng \((EFK)\) và thiết diện có được là hình lục giác \(EHFIKJ\). Lục giác này có ba cặp cạnh đối song song và bằng nhau nên nó là lục giác đều. Hình dưới đây:

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu