Câu 27 trang 66 SGK Hình học 10

Bình chọn:
3 trên 4 phiếu

Tam giác ABC vuông cân tại A và nội tiếp trong đường tròn tâm O bán kính R. Gọi R là bán kính đường tròn nội tiếp tam giác ABC.

Bài 27. Tam giác \(ABC\) vuông cân tại \(A\) và nội tiếp trong đường tròn tâm \(O\) bán kính \(R\). Gọi \(R\) là bán kính đường tròn nội tiếp tam giác \(ABC\). Khi đó tỉ số \({R \over r}\) là:

A. \(1 + \sqrt 2\)                                                  

B. \({{2 + \sqrt 2 } \over 2}\)

C. \({{\sqrt 2  - 1} \over 2}\)                                                   

D. \({{1 + \sqrt 2 } \over 2}\)

Trả lời:

Ta có:

\(\left. \matrix{
{S_{ABC}} = {R^2} \hfill \cr
p = {1 \over 2}(R\sqrt 2 + R\sqrt 2 + 2R) \hfill \cr} \right\} \Rightarrow p = R(\sqrt 2 + 1)\)

Suy ra: \(r = {S \over p} = {R \over {\sqrt 2  + 1}} \Rightarrow {R \over r} = \sqrt 2  + 1\)

Vậy chọn A.

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 10 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 10, mọi lúc, mọi nơi cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan