Câu 18 trang 109 SGK Đại số và Giải tích 11 Nâng cao

Bình chọn:
3.4 trên 5 phiếu

Cho dãy số (sn)

Bài 18. Cho dãy số (sn) với  \({s_n} = \sin \left( {4n - 1} \right){\pi \over 6}.\)

a. Chứng minh rằng \({s_n} = {s_{n + 3}}\) với mọi \(n ≥ 1\)

b. Hãy tính tổng \(15\) số hạng đầu tiên của dãy số đã cho.

Giải:

a. Với \(n>1\) tùy ý, ta có :

\(\eqalign{
& {s_{n + 3}} = \sin \left[ {4\left( {n + 3} \right) - 1} \right]{\pi \over 6} \cr
& = \sin \left[ {4n - 1 + 12} \right]{\pi \over 6} \cr
& = \sin \left[ {\left( {4n - 1} \right){\pi \over 6} + 2\pi } \right] \cr
& = \sin \left( {4n - 1} \right){\pi \over 6} = {s_n} \cr} \)

b. Từ kết quả phần a ta có :

\(\eqalign{
& {s_1} = {s_4} = {s_7} = {s_{10}} = {s_{13}}, \cr
& {s_2} = {s_5} = {s_8} = {s_{11}} = {s_{14}}, \cr
& {s_3} = {s_6} = {s_9} = {s_{12}} = {s_{15}} \cr} \)

Từ đó suy ra :

\({s_1} + {s_2} + {s_3} = {s_4} + {s_5}{ + _6} = {s_7} + {s_8} + {s_9} = {s_{10}} + {s_{11}} + {s_{12}} = {s_{13}} + {s_{14}} + {s_{15}}\)

Do đó :  \({S_{15}} = {s_1} + {s_2} + ... + {s_{15}} = 5\left( {{s_1} + {s_2} + {s_3}} \right)\)

Bằng cách tính trực tiếp, ta có  \({s_1} = 1,{s_2} = - {1 \over 2}\,\text{ và }\,{s_3} = - {1 \over 2} \Rightarrow {s_{15}} = 0\)

Loigiaihay.com

Các bài liên quan