Bài tập 4 - Trang 101- SGK Toán Giải tích 12

Bình chọn:
3.7 trên 24 phiếu

Sử dụng phương pháp tính nguyên hàm từng phần, hãy tính:

Bài 4. Sử dụng phương pháp tính nguyên hàm từng phần, hãy tính:

a) \(∫xln(1+x)dx\);             b) \(\int {({x^2} + 2x + 1){e^x}dx}\)

c) \(∫xsin(2x+1)dx\);         d) \(\int (1-x)cosxdx\)

Hướng dẫn giải:

a) Áp dụng phương pháp tìm nguyên hàm từng phần:

Đặt \(u= ln(1+x)\)

     \(dv= xdx\)    

\(\Rightarrow du=\frac{1}{1+x}dx\) ,  \(v=\frac{x^{2}-1}{2}\)

Ta có: \(∫xln(1+x)dx = \frac{1}{2}.(x^{2}-1)ln(1+x)\)\(-\frac{1}{2}\int (x-1)dx)\)

                             \(=\frac{1}{2}.(x^{2}-1)ln(1+x)-\frac{1}{4}x^{2}+\frac{x}{2}+C\)

b) Tìm nguyên hàm t4ừng phần hai lần:

Đặt \(u = ({x^2} + 2x - 1)\) và \(dv=e^xdx\)

Suy ra \(du = (2x+2)dx\), \(v=e^x\)

. Khi đó:

\(\int {({x^2} + 2x{\rm{ }} - {\rm{ }}1){e^x}dx} \) = \(({x^2} + 2x{\rm{ }} - {\rm{ }}1){e^x}\) - \(\int {(2x + 2){e^x}dx} \)

Đặt : \(u=2x+2\); \(dv={e^x}dx\)

 \(\Rightarrow du = 2dx ;v={e^x}\)

Khi đó: \(\int {(2x + 2){e^x}dx} \)\(= {(2x + 2){e^x}}\)\(- 2\int {{e^x}dx} \)\(= {\rm{ }}{e^x}\left( {2x + 2} \right){\rm{ }}-{\rm{ }}2{e^x} + C\)

Vậy: \(\int {({x^2} + 2x{\rm{ }} - {\rm{ }}1){e^x}dx} ={e^x}({x^2} - 1){\rm{ }} + {\rm{ }}C\)

c) Đáp số: \(-\frac{x}{2}cos (2x+1)+ \frac{1}{4}sin(2x+1)+C\)

HD: Đặt \(u=x\); \(dv = sin(2x+1)dx\)

d) Đáp số : \((1-x)sinx - cosx +C\).

HD: Đặt \(u = 1 - x\)  ;\(dv = cosxdx\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan