Bài tập 3 - Trang 68 - SGK Hình học 12

Bình chọn:
3.7 trên 3 phiếu

Tính tọa độ các đỉnh của hình hộp.

Bài3. Cho hình hộp \(ABCD.A'B'C'D'\) biết \(A = (1; 0; 1), B = (2; 1; 2), D = (1; -1; 1)\),

\(C' (4; 5; -5)\). Tính tọa độ các đỉnh còn lại của hình hộp.

Giải:

Ta có:  

\(\eqalign{
& \overrightarrow {AB} = \left( {1;1;1} \right) \cr
& \overrightarrow {A{\rm{D}}} = \left( {0; - 1;0} \right) \cr
& \overrightarrow {BC} = \overrightarrow {A{\rm{D}}} \Leftrightarrow \left\{ \matrix{
{x_C} - 2 = 0 \hfill \cr
{y_C} - 1 = - 1 \hfill \cr
{z_C} - 2 = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{x_C} = 2 \hfill \cr
{y_C} = 0 \hfill \cr
{z_C} = 2 \hfill \cr} \right. \cr} \)

Vậy \(C = (2; 0; 2)\)

Suy ra \(\overrightarrow {CC'}  = \left( {2;5; - 7} \right)\)  

Từ \(\overrightarrow {AA}  = \overrightarrow {BB}  = \overrightarrow {DD}  = \overrightarrow {CC}  = \left( {2;5; - 7} \right)\)

Suy ra \(\left\{ \matrix{
{x_A} - 1 = 2 \hfill \cr 
{y_A} - 0 = 5 \hfill \cr 
{z_A} - 1 = - 7 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{x_A} = 3 \hfill \cr 
{y_A} = 5 \hfill \cr 
{z_A} = - 6 \hfill \cr} \right.\) 

Vậy \(A’ (3; 5; -6)\)

Tương tự \(B’ = (4; 6; -5); D’ = (3; 4; -6)\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan