Bài tập 2 - Trang 100-101-SGK Giải tích 12

Bình chọn:
4.5 trên 30 phiếu

Tìm nguyên hàm của các hàm số sau?

Bài 2.Tìm nguyên hàm của các hàm số sau?

a) \(f(x) = \frac{x+\sqrt{x}+1}{^{\sqrt[3]{x}}}\) ;               b) \( f(x)=\frac{2^{x}-1}{e^{x}}\)

c) \(f(x) = \frac{1}{sin^{2}x.cos^{2}x}\);              d) \(f(x) = sin5x.cos3x\)

e) \(f(x) = tan^2x\)                     g) \(f(x) = e^{3-2x}\)

h) \(f(x) =\frac{1}{(1+x)(1-2x)}\) ;

Giải

a) Điều kiện \(x>0\). Thực hiện chia tử cho mẫu ta được:

\(f(x) = \frac{x+x^{\frac{1}{2}}+1}{x^{\frac{1}{3}}}\) = \(x^{1-\frac{1}{3}}+ x^{\frac{1}{2}-\frac{1}{3}}+ x^{-\frac{1}{3}}\) = \(x^{\frac{2}{3}}+ x^{\frac{1}{6}} + x^{-\frac{1}{3}}\)

\(∫f(x)dx = ∫(x^{\frac{2}{3}}+ x^{\frac{1}{6}} + x^{-\frac{1}{3}})dx\) = \(\frac{3}{5}x^{\frac{5}{3}}+ \frac{6}{7}x^{\frac{7}{6}}+\frac{3}{2}x^{\frac{2}{3}}\) +C

b) Ta có \(f(x) = \frac{2^{x}-1}{e^{x}}\) = \((\frac{2}{e})^{x}\)\(-e^{-x}\)

 ; do đó nguyên hàm của \(f(x)\) là:

\(F(x)= \frac{(\frac{2}{e})^{x}}{ln\frac{2}{e}} + e^{-x}+C\) =\(\frac{2^{x}}{e^{x}(ln2 -1)}+\frac{1}{e^{x}}+C\)= \(\frac{2^{x}+ln2-1}{e^{x}(ln2-1)} + C\)

c) Ta có \(f(x) = \frac{1}{sin^{2}x.cos^{2}x}=\frac{4}{sin^{2}2x}\)

hoặc \(f(x) =\frac{1}{cos^{2}x.sin^{2}x}=\frac{1}{cos^{2}x}+\frac{1}{sin^{2}x}\)

Do đó nguyên hàm của \(f(x)\) là \(F(x)= -2cot2x + C\)

d) Áp dụng công thức biến tích thành tổng:

 \(f(x) =sin5xcos3x = \frac{1}{2}(sin8x +sin2x)\).

Vậy nguyên hàm của hàm số \(f(x)\) là

\(F(x)\) = \(-\frac{1}{4}\)(\(\frac{1}{4}cos8x + cos2x) +C\)

e) Ta có  \(tan^{2}x = \frac{1}{cos^{2}x}-1\)

vậy nguyên hàm của hàm số f(x) là \(F(x) = tanx - x + C\)

g) Ta có  \(\int {{e^{3 - 2x}}} dx =  - {1 \over 2}\int {{e^{3 - 2x}}} d(3 - 2x) =  - {1 \over 2}{e^{3 - 2x}} + C\)

h) Ta có :\(\int \frac{dx}{(1+x)(1-2x))}=\frac{1}{3}\int (\frac{1}{1+x}+\frac{2}{1-2x})dx\)

                = \(\frac{1}{3}(ln\left | 1+x \right |)-ln\left | 1-2x \right |)+C\) 

                = \(\frac{1}{3}ln\left | \frac{1+x}{1-2x} \right | +C\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan