Bài 9 trang 59 sgk hình học 10


Cho hình bình hành ABCD có

Bài 9. Cho hình bình hành \(ABCD\) có \(AB = a, BC = b ,BD = m\), và \(AC = n\). Chứng minh rằng :

$${m^2} + {n^2} = 2({a^2} + {b^2})$$

Giải

Áp dụng định lí về đường trung tuyến:

\(OA^2 =\frac{AD^{2}+AB ^{2}}{2} - \frac{BD^{2}}{4}\)

Thay \(OA = \frac{n}{2}, AB = a\)

\(AD = BC = b\) và \(BD = m\)

\({\left( {{n \over 2}} \right)^2} = {{{b^2} + {a^2}} \over 2} - {{{m^2}} \over 4} \Rightarrow {n^2} = 2{b^2} + 2{a^2} - {m^2} \)

\(\Rightarrow {m^2} + {n^2} = 2({a^2} + {b^2})\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 10 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 10, mọi lúc, mọi nơi cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu