Bài 9 trang 12 sgk toán 9 tập 2.


Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích vì sao:

9. Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích vì sao:

a) \(\left\{\begin{matrix} x + y = 2 & & \\ 3x + 3y = 2 & & \end{matrix}\right.\);                           b) \(\left\{\begin{matrix} 3x -2 y = 1 & & \\ -6x + 4y = 0 & & \end{matrix}\right.\)

Bài giải:

a) \(\left\{\begin{matrix} x + y = 2 & & \\ 3x + 3y = 2 & & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} y = -x + 2 & & \\ 3x + 3y = 2 & & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} y = -x + 2 & & \\ y = -x + \frac{2}{3} & & \end{matrix}\right.\)

Ta có: a = -1, a' = -1, b = 2, b' = \(\frac{2}{3}\) nên a = a', b ≠ b' => Hai đường thẳng song song nhau.

Vậy hệ  phương trình vô nghiệm vì hai  đường thẳng biểu diễn các tập nghiệm của hai phương trình trong hệ song song với nhau.

b) \(\left\{\begin{matrix} 3x -2 y = 1 & & \\ -6x + 4y = 0 & & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} 2y = 3x - 1 & & \\ 4y = 6x& & \end{matrix}\right.\)⇔ \(\left\{\begin{matrix} y = \frac{3}{2}x - \frac{1}{2} & & \\ y = \frac{3}{2}x& & \end{matrix}\right.\)

Ta có: a = \(\frac{3}{2}\), a' = \(\frac{3}{2}\), b = -\(\frac{1}{2}\), b' = 0 nên a = a', b ≠b'.

=> Hai đường thẳng song song với nhau.

Vậy hệ phương trình vô nghiệm vì hai đường thẳng biểu diễn các tập nghiệm của hai phương trình trong hệ song song với nhau.

>>>>> Học tốt lớp 9 luyện thi vào 10 các môn Toán, Văn, Anh, Lý, Hóa năm 2018 bởi các Thầy Cô uy tín, nổi tiếng học hiệu quả, dễ hiểu