Bài 88 trang 111 sgk toán 8 tập 1

Bình chọn:
4.6 trên 21 phiếu

Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, BC, CD, DA. Các đường chéo AC, BD của tứ giác ABCD có điều kiện gì thì EFGH là:

Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, BC, CD, DA. Các đường chéo AC, BD của tứ giác ABCD có điều kiện gì thì EFGH là:

a) Hình chữ nhật?

b) Hình thoi?      

c) Hình vuông

Hướng dẫn làm bài:

 

Ta có: EB = EA, FB = FC (gt)

Nên EF //AC, EF =  \({1 \over 2}\) AC.

HD = HA, GD = GC (gt)

Nên HG // AC, HG =  \({1 \over 2}\)AC.

Do đó EF //HG, EF = HG.

Tương tự EH // FG, EH = FG

Vậy EFGH là hình bình hành.

a)Hình bình hành EFGH là hình chữ nhật ⇔EH  ⊥ EF

   ⇔ AC ⊥ BD (vì EH // CD. EF // AC)

Điều kiện phải tìm: các đường chéo AC và BD vuông góc với  nhau.

b)Hình bình hành EFGH là hình thoi   ⇔EF = EH

  ⇔AC = BD (vì  \(EF = {1 \over 2}AC,EH = {1 \over 2}BD)\)

Điều kiện phải tìm: các đường chéo AC và BD bằng nhau.

c)Hình bình hành EFGH là hình vuông.

EFGH là hình vuông

EFGH là hình thoi

=> AC ⊥ BD và AC = BD

Điều kiện phải tìm: các đường chéo AC, BD bằng nhau và vuông góc với nhau.

Đã có lời giải Sách bài tập - Toán lớp 8 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan