Bài 83 trang 99 sgk Toán lớp 9 tập 2


a) Vẽ hình 62

Bài 83. a) Vẽ hình 62 (tạo bởi các cung tròn) với \(HI = 10cm\) và \(HO = 2cm\). Nêu cách vẽ.

b) Tính diện tích hình \(HOABINH\) (miền gạch sọc)

c) Chứng tỏ rằng hình tròn đường kính \(NA\) có cùng diện tích với hình \(HOABINH\) đó.

Hướng dẫn giải:

a) Vẽ nửa đường tròn đường kính \(HI = 10 cm\), tâm \(M\)

Trên đường kính \(HI\) lấy điểm \(O\) và điểm \(B\) sao cho \(HO = BI = 2cm\).

Vẽ hai nửa đường tròn đường kính \(HO\), \(BI\) nằm cùng phía với đường tròn \((M)\).

vẽ nửa đường tròn đường kính \(OB\) nằm khác phía đối với đường tròn \((M)\). Đường thẳng vuông góc với \(HI\) tại \(M\) cắt \((M)\) tại \(N\) và cắt đường tròn đường kính \(OB\) tại \(A\).

b)  Diện tích hình \(HOABINH\) là:

\(\frac{1}{2}\).\(π.5^2\) + \(\frac{1}{2}\).\(π.3^2\) – \(π.1^2\) = \(\frac{25}{2}π\) + \(\frac{9}{2}π\) - \(π\) = \(16π\) (\(cm^2\)) (1)

c) Diện tích hình tròn đường kính \(NA\) bằng:

             \(π. 4^2 = 16π\)  (\(cm^2\))                                           (2)

So sánh (1) và (2) ta thấy hình tròn đường kính \(NA\) có cùng diện tích với hình \(HOABINH\)

loigiaihay.com

Đã có lời giải Sách bài tập Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>>>> Học tốt lớp 9 luyện thi vào 10 các môn Toán, Văn, Anh, Lý, Hóa năm 2018 bởi các Thầy Cô uy tín, nổi tiếng học hiệu quả, dễ hiểu