Bài 7 trang 92 sgk hình học 11


Gọi M và N lần lượt là trung điểm của các cạnh AC và BD của tứ diện ABCD.

7. Gọi M và N lần lượt là trung điểm của các cạnh AC và BD của tứ diện ABCD. Gọi I là trung điểm của đoạn thẳng MN và P là một điểm bất kì trong không gian. Chứng minh rằng: 

a) \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0};\)

b) \(\overrightarrow{PI}=\frac{1}{4}(\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}+\overrightarrow{PD}).\)

Hướng dẫn.

(H.3.6)

a) \(\overrightarrow{IA}+\overrightarrow{IB}=2\overrightarrow{IM},\)

    \(\overrightarrow{IB}+\overrightarrow{IC}=2\overrightarrow{IN}.\)

Cộng từng vế ta được đpcm.

b) \(\overrightarrow{PI}=\overrightarrow{PA}+\overrightarrow{AI},\)

    \(\overrightarrow{PI}=\overrightarrow{PB}+\overrightarrow{BI},\)

    \(\overrightarrow{PI}=\overrightarrow{PC}+\overrightarrow{CI},\)

    \(\overrightarrow{PI}=\overrightarrow{PD}+\overrightarrow{DI}.\)

Cộng từng vế ta được đpcm.

>>>>> Học tốt lớp 11 các môn Toán, Lý, Anh, Hóa năm 2018 bởi các Thầy Cô uy tín, nổi tiếng học hiệu quả, dễ hiểu