Bài 7 trang 10 sgk đại số 10


Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai cuả nó.

Bài 7. Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của nó.

a) \(∀n ∈ \mathbb N\): \(n\) chia hết cho \(n\); 

b) \(∃x ∈ \mathbb Q\): \(x^2=2\);

c) \(∀x ∈ \mathbb R\): \(x< x+1\);

d) \(∃x ∈ \mathbb R: 3x=x^2+1\);

Giải:

a) Có một số tự nhiên \(n\) không chia hết cho chính nó. Mệnh đề này sai vì \(n=0 ∈ \mathbb N\), \(0\) không chia hết cho \(0\).

b) \(\overline{\exists x\in \textbf{Q}:x^{2}=2}\) = "Bình phương của một số hữu tỉ là một số khác 2". Mệnh đề đúng.

c) \(\overline{\forall x\in \textbf{R}:x<x+1} = ∃x ∈ \mathbb R: x≥x+1=\) "Tồn tại số thực \(x\) không nhỏ hơn số ấy cộng với \(1\)". Mệnh đề này sai.

d) \(\overline{\exists x\in \textbf{R}:3x=x^{2}+1} = ∀x ∈\mathbb R: 3x ≠ x^2+1=\) "Tổng của \(1\) với bình phương của số thực \(x\) luôn luôn không bằng \(3\) lần số \(x\)"  

Đây là mệnh đề sai vì với \(x=\frac{3+\sqrt{5}}2{}\) ta có : 

\(3. \left (\frac{3+\sqrt{5}}{2} \right )\)=\(\left (\frac{3+\sqrt{5}}{2} \right )^{2}+1\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 10 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 10, mọi lúc, mọi nơi cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu