Tuyensinh247.com giảm giá 50% chỉ duy nhất 1 ngày 20/11 - KM lớn nhất 2017
Xem ngay

Bắt đầu sau: 08:39:07

Bài 65 trang 100 sgk toán 8 tập 1


Tứ giác ABCD có hai đường chéo vuông góc với nhau. Gọi

Bài 65. Tứ giác \(ABCD\) có hai đường chéo vuông góc với nhau. Gọi \(E, F, G, H\) theo thứ tự là trung điểm của các cạnh \(AB, BC, CD, DA\). Tứ giác \(EFGH\) là hình gì ? Vì sao ?

Bài giải:

Ta có \(EB = EA, FB = FC\) (do \(E,F\) là trung điểm của \(AB,BC\))

\(EF\) là đường trung bình của \(∆ABC\)

Do đó \(EF // AC\)  (1)

Do \(G,H\) là trung điểm của \(CD,DA) nên

\( HG\) là đường trung bình của \(∆ADC\)

Do đó \(HG // AC\)  (2)

Từ (1) và (2) suy ra \(EF // HG\)

Chứng minh tương tự \(EH // FG\)

Do đó \(EFGH\) là hình bình hành.

Ta có: \(EF // AC\) và \(EH//BD\) mà \(AC\bot BD\) nên \(EF\bot EH\)

Hay \(\widehat{FEH} = 90^0\)

Hình bình hành \(EFGH\)  có \(\widehat{E} = 90^0\) nên là hình chữ nhật (theo dấu hiệu nhận biết hình chữ nhật).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 8 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu