Tuyensinh247.com giảm giá 50% chỉ duy hôm nay 20/11 - KM lớn nhất 2017
Xem ngay

Chỉ còn: 19:27:12

Bài 64 trang 92 sgk Toán lớp 9 tập 2


Bài 64. Trên đường tròn bán kính

Bài 64.Trên đường tròn bán kính \(R\) lần lượt đặt theo cùng một chiều, kể từ điểm \(A\), ba cung \(\overparen{AB}\), \(\overparen{BC}\), \(\overparen{CD}\) sao cho: \(sđ\overparen{AB}\)=\(60^0\), \(sđ\overparen{BC}\)=\(90^0\), \(sđ\overparen{CD}\)=\(120^0\)

a) Tứ giác \(ABCD\) là hình gì?

b) Chứng minh hai đường chéo của tứ giác \(ABCD\) vuông góc với nhau.

c) Tính độ dài các cạnh của tứ giác \(ABCD\) theo \(R\).

Hướng dẫn giải:

\(\widehat {BA{\rm{D}}} = {{{{90}^0} + {{120}^0}} \over 2} = {105^0}\) (góc nội tiếp chắn \(\overparen{BCD}\))     (1)

\(\widehat {A{\rm{D}}C} = {{{{60}^0} + {{90}^0}} \over 2} = {75^0}\) ( góc nội tiếp chắn\(\overparen{ABC}\) )          (2)

Từ (1) và (2) có:

\(\widehat {BA{\rm{D}}} + \widehat {A{\rm{D}}C} = {105^0} + {75^0} = {180^0}\) (3)

\(\widehat {BA{\rm{D}}}\) và \(\widehat {A{\rm{D}}C}\) là hai góc trong cùng phía tạo bởi cát tuyến \(AD\) và hai đường thẳng \(AB, CD\).

Đẳng thức (3) chứng tỏ \(AB // CD\). Do đó tứ giác \(ABCD\) là hình thang, mà hình thang nội tiếp là hình thang cân. 

Vậy \(ABCD\) là hình thang cân (\(BC = AD\) và \(sđ\overparen{BC}\)=\(sđ\overparen{AD}\)=\(90^0\))

b) Giả sử hai đường chéo \(AC\) và \(BD\) cắt nhau tại \(I\).

\(\widehat {CI{\rm{D}}}\) là góc có đỉnh nằm trong đường tròn, nên:

\(\widehat {CI{\rm{D}}}\) = \(\frac{sđ\overparen{AB}+sđ\overparen{CD}}{2}\)=\({{{{60}^0} + {{120}^0}} \over 2} = {90^0}\)

Vậy \(AC \bot BD\)

c)

\(sđ\overparen{AB}\) = \(60^0\) nên \(\widehat {AIB} = {60^0}\) \(=> ∆AIB\) đều, nên \(AB = R\)

\(sđ\overparen{BC}\)= \(90^0\) nên \(BC = R\sqrt2\)

        \( AD = BC = R\sqrt2\)

nên \(sđ\overparen{CD}\)= \(120^0\) nên \(CD = R\sqrt3\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu