Tuyensinh247.com giảm giá 50% tất cả các khóa học đến hết ngày 20/4/2018
Xem ngay

Chỉ còn: 1 ngày

Bài 64 trang 33 sgk Toán 9 - tập 1

Bình chọn:
4.8 trên 39 phiếu

Chứng minh các đẳng thức sau:

Chứng minh các đẳng thức sau:

a) \(\left( {{{1 - a\sqrt a } \over {1 - \sqrt a }} + \sqrt a } \right){\left( {{{1 - \sqrt a } \over {1 - a}}} \right)^2} = 1\) với a ≥ 0 và a ≠ 1

b) \( {{a + b} \over {{b^2}}}\sqrt {{{{a^2}{b^4}} \over {{a^2} + 2{\rm{a}}b + {b^2}}}}  = \left| a \right|\) với a + b > 0 và b ≠ 0

Hướng dẫn giải:

a) Biến đổi vế trái để được vế phải.

Ta có:

\(VT=\left ( \frac{1-a\sqrt{a}}{1-\sqrt{a}} +\sqrt{a}\right )\left ( \frac{1-\sqrt{a}}{1-a} \right )^{2}\)

\(= \frac{(1-a\sqrt{a}+\sqrt{a}-a)(1-\sqrt{a})}{(1-a)^{2}}\)

\(=\frac{\left [ (1-a) +(\sqrt{a}-a\sqrt{a})\right ](1-\sqrt{a})}{(1-a)^{2}}\)

\(= \frac{(1-a)(1-a)}{(1-a)^{2}}=1=VP\)

b) Ta có:

\(VT=\frac{a+b}{b^{2}}\sqrt{\frac{a^{2}b^{4}}{a^{2}+2ab+b^{2}}}\)

\(=\frac{a+b}{b^{2}}.\frac{|a|b^2}{|a+b|}\)

Mà \(a+b>0\Rightarrow |a+b|=a+b\) nên:

\(\frac{a+b}{b^{2}}.\frac{|a|b^2}{|a+b|}=\frac{a+b}{b^{2}}.\frac{|a|b^2}{a+b}=|a|=VP\)

Loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan