Bài 61 trang 33 sgk Toán 9 - tập 1

Bình chọn:
4.8 trên 34 phiếu

Chứng minh các đẳng thức sau:

Chứng minh các đẳng thức sau:

a)\({3 \over 2}\sqrt 6  + 2\sqrt {{2 \over 3}}  - 4\sqrt {{3 \over 2}}  = {{\sqrt 6 } \over 6}\)

b) \(\left( {x\sqrt {{6 \over x}}  + \sqrt {{{2{\rm{x}}} \over 3}}  + \sqrt {6{\rm{x}}} } \right):\sqrt {6{\rm{x}}}  = 2{1 \over 3}\) với x > 0.

Hướng dẫn giải:

a) Biến đổi vế trái ta có:

\(\eqalign{
& {3 \over 2}\sqrt 6 + 2\sqrt {{2 \over 3}} - 4\sqrt {{3 \over 2}} \cr
& = {3 \over 2}\sqrt 6 + 2\sqrt {{6 \over {{3^2}}}} - 4\sqrt {{6 \over {{2^2}}}} \cr
& = {{3\sqrt 6 } \over 2} + {{2\sqrt 6 } \over 3} - {{4\sqrt 6 } \over 2} \cr
& = {{\sqrt 6 } \over 6} \cr} \)

b) Biến đổi vế trái ta có:

\(\eqalign{
& \left( {x\sqrt {{6 \over x}} + \sqrt {{{2{\rm{x}}} \over 3}} + \sqrt {6{\rm{x}}} } \right):\sqrt {6{\rm{x}}} \cr
& = \left( {x\sqrt {{{6{\rm{x}}} \over {{x^2}}}} + \sqrt {{{6{\rm{x}}} \over {{3^2}}}} + \sqrt {6{\rm{x}}} } \right):\sqrt {6{\rm{x}}} \cr
& = \left( {\sqrt {6{\rm{x}}} + {{\sqrt {6{\rm{x}}} } \over 3} + \sqrt {6{\rm{x}}} } \right):\sqrt {6{\rm{x}}} \cr
& = \left( {2{1 \over 3}\sqrt {6{\rm{x}}} } \right):\sqrt {6{\rm{x}}} \cr
& = 2{1 \over 3} \cr} \)

Loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan