Bài 6 trang 55 sgk đại số và giải tích 11.


Trong mặt phẳng, cho sáu điểm phân biệt sao cho không có ba điểm nào thẳng hàng. Hỏi

Bài 6. Trong mặt phẳng, cho sáu điểm phân biệt sao cho không có ba điểm nào thẳng hàng. Hỏi có thể lập được bao  nhiêu tam giác mà các đỉnh của nó thuộc tập điểm đã cho ?

Bài giải:

Mỗi tập con gồm \(3\) điểm (không phân biệt thứ tự) của tập hợp \(6\) điểm đã cho xác định duy nhất một tam giác. Từ đó ta có: số tam giác có thể lập được (từ \(6\) điểm đã cho) là:

\(C_6^3 = \frac{6!}{3!3!}= 20\) (tam giác)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu