Bài 6 trang 179 SGK Đại số và giải tích 11

Bình chọn:
3.3 trên 3 phiếu

Chọn ngẫu nhiên ba học sinh từ một tổ gồm sáu nam và bốn nữ. Tính xác suất sao cho:

Bài 6. Chọn ngẫu nhiên ba học sinh từ một tổ gồm sáu nam và bốn nữ. Tính xác suất sao cho:

a) Cả ba học sinh đều là nam

b) Có ít nhất một nam

Trả lời:

+ Không gian mẫu gồm các tổ hợp chập \(3\) của \(10\) học sinh

+ Vậy \(n(\Omega ) = C_{10}^3 = 120\)

a) Gọi \(A\) là biến cố cả ba học sinh đều là nam được chọn

- Số cách chọn \(3\) trong \(6\) nam là tổ hợp chập \(3\) của \(6\) (nam)

Ta có: \(n(A) = C_6^3 = 20\)

Vậy: \(P(A) = {{n(A)} \over {n(\Omega )}} = {{20} \over {120}} = {1 \over 6}\)

b) Gọi \(B\) là biến cố có ít nhất một nam được chọn

Ta có:\(\overline B\) là biến cố không có nam (nghĩa là có \(3\) nữ)

_ Số cách chọn \(3\) trong 4 nữ là : \(n( \overline B) = C_4^3 = 4\)

Suy ra:

\(\eqalign{
& P(\overline B) = {4 \over {120}} = {1 \over {30}} \cr
& \Rightarrow P(B) = 1 - {1 \over {30}} = {{29} \over {30}} \cr} \)

loigiaihay.com

 

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu



Các bài liên quan