Bài 6 trang 169 sách giáo khoa Đại số và Giải tích 11


6. Chứng minh rằng các hàm số sau

Bài 6. Chứng minh rằng các hàm số sau có đạo hàm không phụ thuộc \(x\):

a) \(\sin^6x + \cos^6x + 3\sin^2x.\cos^2x\);

b) \({\cos ^2}\left ( \frac{\pi }{3}-x \right )+ {\cos ^2} \left ( \frac{\pi }{3}+x \right ) +  {\cos ^2}\left ( \frac{2\pi }{3}-x \right )\) \(+{\cos ^2}  \left ( \frac{2\pi }{3}+x \right )-2\sin^2x\).

Lời giải:

a) Ta có:

\(y' = 6{\sin ^5}x.\cos x - 6{\cos ^5}x.\sin x + 6\sin x.\cos^3x -  6{\sin ^3}x.\cos x\)

\(= 6{\sin ^3}x.\cos x(\sin^2 x - 1) + 6\sin x.\cos^3 x(1 - {\cos ^2}x)\)

\(=  - 6{\sin ^3}x.\cos^3 x + 6{\sin ^3}x.\cos^3 x = 0\).

Vậy \(y' = 0\) với mọi \(x\), tức là \(y'\) không phụ thuộc vào \(x\).

 b)

\(y = {{1 + \cos \left( {{{2\pi } \over 3} - 2x} \right)} \over 2} + {{1 + \cos \left( {{{2\pi } \over 3} + 2x} \right)} \over 2} + {{1 + \cos \left( {{{4\pi } \over 3} - 2x} \right)} \over 2} \)

          \(+ {{1 + \cos \left( {{{4\pi } \over 3} + 2x} \right)} \over 2} - 2{\sin ^2}x\)

Áp dụng công thức tính đạo hàm của hàm số hợp ta được

\(y' =\sin \left ( \frac{2\pi }{3}-2x \right ) - \sin \left ( \frac{2\pi }{3}+2x \right )+ \sin \left ( \frac{4\pi }{3}-2x \right ) - \sin \left ( \frac{4\pi }{3}+2x \right )\)

\(- 2\sin 2x = 2\cos \frac{2\pi }{3}.\sin(-2x) + 2\cos \frac{4\pi }{3}. \sin (-2x) - 2\sin 2x \)

\(= \sin 2x + \sin 2x - 2\sin 2x = 0\),

vì \(\cos \frac{2\pi }{3}\) = \(\cos \frac{4\pi }{3}\) = \( -\frac{1}{2}\).

Vậy \(y' = 0\) với mọi \(x\), do đó \(y'\) không phụ thuộc vào \(x\).

 loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu