Bài 6 trang 156 sách giáo khoa Đại số và Giải tích 11

Bình chọn:
3.8 trên 5 phiếu

6. Viết phương trình tiếp tuyến của đường hypebol

Bài 6. Viết phương trình tiếp tuyến của đường hypebol \(y =  \frac{1}{x}\):

a) Tại điểm \((  \frac{1}{2} ; 2)\)

b) Tại điểm có hoành độ bằng \(-1\);

c) Biết rằng hệ số góc của tiếp tuyến bằng -\( \frac{1}{4}\).

Giải:

Bằng định nghĩa ta tính được \(y' = - \frac{1}{x^{2}}\).

a) \(y'  \left ( \frac{1}{2} \right )= -4\). Do đó hệ số góc của tiếp tuyến bằng \(-4\). Vậy phương trình tiếp tuyến của hypebol tại điểm \((  \frac{1}{2} ; 2)\) là \(y - 2 = -4(x -  \frac{1}{2})\) hay \(y = -4x + 4\).

b) \(y' (-1) = -1\). Do đó hệ số góc của tiếp tuyến bằng \(-1\). Ngoài ra, ta có \(y(-1) = -1\). Vậy phương trình tiếp tuyến tại điểm có tọa độ là \(-1\) là \(y - (-1) = -[x - (-1)]\) hay \(y = -x - 2\).

c) Gọi \(x_0\) là hoành độ tiếp điểm. Ta có

\(y' (x_0) = -  \frac{1}{4} \Leftrightarrow -  \frac{1}{x_{0}^{2}} = -  \frac{1}{4}\)\(\Leftrightarrow x_{0}^{2} = 4 \Leftrightarrow x_{0}=  ±2\).

Với \(x_{0}= 2\) ta có \(y(2) =  \frac{1}{2}\), phương trình tiếp tuyến là

     \(y -  \frac{1}{2} = - \frac{1}{4}(x - 2)\) hay \(y =  \frac{1}{4}x + 1\).

Với \(x_{0} = -2\) ta có \(y (-2) = - \frac{1}{2}\), phương trình tiếp tuyến là

    \(y -  \left ( -\frac{1}{2} \right ) = - \frac{1}{4}[x - (-2)]\) hay \(y = -  \frac{1}{4}x -1\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan