Bài 6 trang 109 - Sách giáo khoa toán 7 tập 1

Bình chọn:
5 trên 176 phiếu

Bài 6. Tìm các số đo x ở các hình sau:

Bài 6. Tìm các số đo \(x\) ở các hình sau:

Giải:

Hình 55)

Theo định lí tổng hai góc nhọn của tam giác vuông phụ nhau ta áp dụng vào \(\Delta AHI\,\text{ có }\,\widehat H = {90^0}\) ta được: 

\(\widehat{A}+\widehat{AIH}= 90^0\),  (1)

Áp dụng vào \(\Delta BKI\,\text{ có }\,\widehat K = {90^0}\) ta được: 

\(\widehat{B}\) + \(\widehat{BIK} = 90^0\)   (2)

mà  \(\widehat{AIH}\)= \(\widehat{BIK}\) (vì hai góc đối đỉnh)   (3)

Từ (1), (2) và (3) suy ra \(\widehat{A}\) = \(\widehat{B}\)

Vậy \(\widehat{B}=x= 40^0\)

Hình 56)

Theo định lí tổng hai góc nhọn của tam giác vuông phụ nhau ta áp dụng vào \(\Delta ABD\,\text{ có }\,\widehat {ADB} = {90^0}\) ta được:

 \(\widehat{ABD}\) +\(\widehat{A}= 90^0\),  (1)

Áp dụng vào \(\Delta ACE\,\text{ có }\,\widehat {AEC} = {90^0}\) ta được:

\(\widehat{ACE}\)+ \(\widehat{A}=90^0\),  (2)

Từ (1) và (2) suy ra \(\widehat{ACE}\) = \(\widehat{ABD}=25^0\)

Vậy \(x=25^0\)

Hình 57)

Ta có: \(\widehat{NMP}=\widehat{NMI}\) + \(\widehat{PMI}=  90^0\),  (1)

Theo định lí tổng hai góc nhọn của tam giác vuông phụ nhau ta áp dụng vào \(\Delta MNI\,\text{ có }\,\widehat {MIN} = {90^0}\) ta có :

\(\widehat{N }\) +  \(\widehat{NMI}=  90^0\),   (2)

Từ (1) và (2) suy ra \(\widehat{N }\) = \(\widehat{PMI}=60^0\)

Vậy \(x=60^0\)

Hình 58)

Theo định lí tổng hai góc nhọn của tam giác vuông phụ nhau ta  áp dụng vào \(\Delta AHE\,\text{ có }\,\widehat {AHE} = {90^0}\) ta có :

\(\widehat{E }\) + \(\widehat{A}=90^0\)

\(\widehat{E }= 90^0- \widehat{A} = 90^0- 55^0= 35^0\)

\(\widehat{KBH }=\widehat{BKE}+ \widehat{E }\) (Góc ngoài tam giác \(BKE\))

            \(= 90^0+ 35^0= 125^0\)

Vậy \(x=125^0\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 7 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 7, mọi lúc, mọi nơi môn Toán, Văn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan