Bài 59 trang 90 sgk Toán lớp 9 tập 2


Bài 59. Cho hình bình hành ABCD

Bài 59. Cho hình bình hành \(ABCD\). Đường tròn đi qua ba đỉnh \(A, B, C\) cắt đường thẳng \(CD\) tại \(P\) khác \(C\). Chứng minh \(AP = AD\)

Hướng dẫn giải:

Do tứ giác \(ABCP\) nội tiếp nên ta có:

             \(\widehat{BAP}\) + \(\widehat{BCP}\) = \(180^0\)        (1)

Ta lại có: \(\widehat{ABC}\)+ \(\widehat{BCP}\) =  \(180^0\)       (2)

(hai góc trong cùng phía tạo bởi cát tuyến \(CB\) và \(AB // CD\))

Từ (1) và (2) suy ra: \(\widehat{BAP}\) = \(\widehat{ABC}\)

Vậy \(ABCP\) là hình thang cân, suy ra \(AP = BC\)      (3)

nhưng \(BC = AD\) (hai cạnh đối đỉnh của hình bình hành)  (4)

Từ (3) và (4) suy ra \(AP = AD\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu