Bài 58 trang 90 sgk Toán lớp 9 tập 2


Bài 58. Cho tam giác đều ABC.

Bài 58. Cho tam giác đều \(ABC\). Trên nửa mặt phẳng bờ \(BC\) không chứa đỉnh \(A\), lấy điểm \(D\) sao cho \(DB = DC\) và \(\widehat{DCB}\) =\(\frac{1}{2}\) \(\widehat{ACB}\).

a) Chứng minh \(ABDC\) là tứ giác nội tiếp.

b) Xác định tâm của đường tròn đi qua bốn điểm \(A, B, D, C\).

Hướng dẫn giải:

a) Theo giả thiết, \(\widehat{DCB}\) =\(\frac{1}{2}\) \(\widehat{ACB}\) = \(\frac{1}{2}\) .\(60^0\)= \(30^0\)  

 \(\widehat{ACD}\) = \(\widehat{ACB}\) + \(\widehat{BCD}\) (tia \(CB\) nằm giữa hai tia \(CA, CD\))

\(\Rightarrow\)\(\widehat{ACD}\) = \(60^0\) + \(30^0\)=\(90^0\)  (1)

Do \(DB = CD\) nên ∆BDC cân => \(\widehat{DBC}\) = \(\widehat{DCB}\) =  30o 

Từ đó \(\widehat{ABD}\) = \(30^0\)+\(60^0\)=\(90^0\) (2)

Từ (1) và (2) có \(\widehat{ACD}\) + \(\widehat{ABD}\) = \(180^0\) nên tứ giác \(ABDC\) nội tiếp được.

b) Vì \(\widehat{ABD}\)  = \(90^0\)nên \(AD\) là đường kính của đường tròn ngoại tiếp tứ giác \(ABDC\), do đó tâm đường tròn ngoại tiếp tứ giác \(ABDC\) là trung điểm \(AD\).

loigiaihay.com

Đã có lời giải Sách bài tập Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>>>> Học tốt lớp 9 luyện thi vào 10 các môn Toán, Văn, Anh, Lý, Hóa năm 2018 bởi các Thầy Cô uy tín, nổi tiếng học hiệu quả, dễ hiểu