Tuyensinh247.com giảm giá 50% chỉ duy nhất 1 ngày 20/11 - KM lớn nhất 2017
Xem ngay

Bắt đầu sau: 1 ngày

Bài 54 trang 25 sgk toán 8 tập 1


Phân tích các đa thức sau thành nhân tử:

Bài 54. Phân tích các đa thức sau thành nhân tử:

a) \({x^3} + {\rm{ }}2{x^2}y{\rm{ }} + {\rm{ }}x{y^2}-{\rm{ }}9x\);                    

b) \(2x{\rm{ }}-{\rm{ }}2y{\rm{ }}-{\rm{ }}{x^2} + {\rm{ }}2xy{\rm{ }}-{\rm{ }}{y^2}\);

c) \({x^4}-{\rm{ }}2{x^2}\).

Bài giải:

a) \({x^3} + {\rm{ }}2{x^2}y{\rm{ }} + {\rm{ }}x{y^2}-{\rm{ }}9x{\rm{ }} = {\rm{ }}x({x^2}{\rm{ }} + 2xy{\rm{ }} + {\rm{ }}{y^2}-{\rm{ }}9)\)

                                            \(= {\rm{ }}x[({x^2} + {\rm{ }}2xy{\rm{ }} + {\rm{ }}{y^2}){\rm{ }}-{\rm{ }}9]\)

                                            \(= {\rm{ }}x[{\left( {x{\rm{ }} + {\rm{ }}y} \right)^2}-{\rm{ }}{3^2}]\)

                                            \(= {\rm{ }}x\left( {x{\rm{ }} + {\rm{ }}y{\rm{ }}-{\rm{ }}3} \right)\left( {x{\rm{ }} + {\rm{ }}y{\rm{ }} + {\rm{ }}3} \right)\)

b) \(2x{\rm{ }}-{\rm{ }}2y{\rm{ }}-{\rm{ }}{x^2} + {\rm{ }}2xy{\rm{ }}-{\rm{ }}{y^2} = {\rm{ }}\left( {2x{\rm{ }}-{\rm{ }}2y} \right){\rm{ }}-{\rm{ }}({x^2}-{\rm{ }}2xy{\rm{ }} + {\rm{ }}{y^2})\)

                                              \(= {\rm{ }}2\left( {x{\rm{ }}-{\rm{ }}y} \right){\rm{ }}-{\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}y} \right)^2}\)

                                              \( = {\rm{ }}\left( {x{\rm{ }}-{\rm{ }}y} \right)\left[ {2{\rm{ }}-{\rm{ }}\left( {x{\rm{ }}-{\rm{ }}y} \right)} \right]\)

                                              \(= (x – y)(2 – x + y)\)

c) \({x^4}-{\rm{ }}2{x^2} = {\rm{ }}{x^2}\left( {{x^2} - 2} \right){\rm{ = }}{{\rm{x}}^2}\left( {{x^2} - {{\left( {\sqrt 2 } \right)}^2}} \right)  \)

\(={x^2}\left( {x{\rm{ }} - {\rm{ }}\sqrt 2 } \right)\left( {x{\rm{ }} + {\rm{ }}\sqrt 2 } \right)\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 8 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu