Bài 51 trang 127 sgk toán 8 tập 2

Bình chọn:
4 trên 13 phiếu

Tính diện tích xung quanh, diện tích toàn phần và thể tích của lăng trụ đứng có chiều cao h và đáy lần lượt là:

Tính diện tích xung quanh, diện tích toàn phần và thể tích của lăng trụ đứng có chiều cao h và đáy lần lượt là:

a)Hình vuông cạnh a;

b)Tam giác đều cạnh a;

c)Lục giác đều cạnh a;

d)Hình thang cân, đáy lớn là 2a, các cạnh còn lại bằng a;

e)Hình thoi có hai đường chéo là 6a và 8a.

Hướng dẫn làm bài

a)

Kí hiệu lăng trụ đứng đã cho như hình bên.

Diện tích xung quanh là:

Sxq = 2p.h = 4.a. h

Diện tích một đáy là :

Sđ = a2

Diện tích toàn phần của lăng trụ đứng là :

Stp = Sxq + 2Sđ  = 4ah + 2a2

Thể tích lăng trụ :

V = Sđh = a2.h

b)

 

Chiều cao của tam giác đều là:

 \(AH = \sqrt {A{B^2} - B{H^2}}  = \sqrt {{a^2} - {{\left( {{a \over 2}} \right)}^2}}  = \sqrt {{{3{a^2}} \over 4}}  = {{a\sqrt 3 } \over 2}\)

Diện tích xung quanh:

Sxq= 2p.h = 3a.h

Diện tích một đáy là:

\({S_đ} = {1 \over 2}a.{{a\sqrt 3 } \over 2} = {{{a^2}\sqrt 3 } \over 4}\)

Diện tích toàn phần là:

Stp = Sxq + 2Sđ = 3ah +2.\({{{a^2}\sqrt 3 } \over 4} = 3ah + {{{a^2}\sqrt 3 } \over 2}\)

Thể tích: \(V = {S_đ}.h = {{{a^2}\sqrt 3 } \over 4}.h = {{{a^2}h\sqrt 3 } \over 4}\)

c) 

 

Diện tích xung quanh là:

Sxq= 2p. h = 6a.h

Diện tích tam giác đều cạnh a (theo câu b) là \({{{a^2}\sqrt 3 } \over 4}\).

Do đó diện tích một đáy của lăng trụ là :

 \({S_đ} = 6.{{{a^2}\sqrt 3 } \over 4} = {{3{a^2}\sqrt 3 } \over 2}\)

Diện tích toàn phần : Stp = Sxq + 2Sd

 \({S_{tp}} = 6ah + 2.{{3{a^2}\sqrt 3 } \over 2} = 6ah + 3{a^2}\sqrt 3  = 3a\left( {2h + a\sqrt 3 } \right)\)

Thể tích lăng trụ :

 \(V = {S_đ}h = 2.{{3{a^2}\sqrt 3 } \over 2} = 6ah + 3{a^2}\sqrt 3  = 3a\left( {2h + a\sqrt 3 } \right)\)

Thể tích tích lăng trụ :

 \(V = {S_đ}.h = {{3{a^2}\sqrt 3 } \over 2}.h = {{3{a^2}h\sqrt 3 } \over 2}\)

d)

 

Diện tích xung quanh :

Sxq = 2ph = (2a + a +a +a). h = 5ah

Chiều cao hình thang cũng chính là chiều cao tam giác đều cạnh a.

 \(AI = {{a\sqrt 3 } \over 2}\)

Diện tích một đáy hình lăng trụ là:

 \({S_đ} = {{\left( {2a + a} \right).h} \over 2} = {{3ah} \over 2}\)

Diện tích toàn phần là:

 \({S_{tp}} = {S_{xq}} + 2{S_đ} = 5ah + 2.{{3ah} \over 2} = 8ah\)

Thể tích hình lăng trụ:

 \(V = S.h = {{3ah} \over 2}.h = {{3a{h^2}} \over 2}\)

e) 

 

Cạnh của hình thoi:

 \(BC = \sqrt {O{B^2} + O{C^2}}  = \sqrt {{{\left( {3a} \right)}^2} + {{\left( {4a} \right)}^2}}  = \sqrt {25{a^2}}  = 5a\)

Diện tích xung quang lăng trụ:

Sxq = 2ph = 4.5a.h = 20ah

Diện tích một đáy của lăng trụ:

\({S_đ} = {1 \over 2}.6a.8a = 24{a^2}\)

Diện tích toàn phần:

Stp = Sxq + 2Sđ = 20ah + 2.24a2 = 20ah + 48a2

Thể tích lăng trụ:

V = Sh = 24a2.h

Đã có lời giải Sách bài tập - Toán lớp 8 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan