Bài 5 trang 98 sgk hình học 11


Cho hình chóp tam giác S.ABC có SA = SB = SC...

Bài 5. Cho hình chóp tam giác \(S.ABC\) có \(SA = SB = SC\) và có \(\widehat{ABC}= \widehat{BSC}=\widehat{CSA}.\) Chứng minh rằng \(SA ⊥ BC, SB ⊥ AC, SC ⊥ AB\).

Giải

(h.3.19)

\(\overrightarrow{SA}.\overrightarrow{BC}=\overrightarrow{SA}.(\overrightarrow{SC}-\overrightarrow{SB})\)

\(=\overrightarrow{SA}.\overrightarrow{SC}-\overrightarrow{SA}.\overrightarrow{SB}\)

\(= SA.SC.\cos\widehat{ASC} - SA.SB.\cos\widehat{ASB} = 0\).

Vậy \(SA ⊥ BC\).

\(\overrightarrow{SB}.\overrightarrow{AC}=\overrightarrow{SB}.(\overrightarrow{SC}-\overrightarrow{SA})\)

\(=\overrightarrow{SB}.\overrightarrow{SC}-\overrightarrow{SB}.\overrightarrow{SA}\)

\(= SB.SC.\cos\widehat{BSC} - SB.SA.\cos\widehat{ASB} = 0\).

Vậy \(SB ⊥ AC\).

\(\overrightarrow{SC}.\overrightarrow{AB}=\overrightarrow{SC}.(\overrightarrow{SB}-\overrightarrow{SA})\)

\(=\overrightarrow{SC}.\overrightarrow{SB}-\overrightarrow{SC}.\overrightarrow{SA}\)

\(= SC.SB.\cos\widehat{BSC} - SC.SA.\cos\widehat{ASC} = 0\).

Vậy \(SC ⊥ AB\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu