Bài 5 trang 29 sgk giải tích 11

Bình chọn:
4.8 trên 41 phiếu

Bài 5. Giải các phương trình sau:

Bài 5. Giải các phương trình sau:   

a) \( tan (x - 150) = \frac{\sqrt{3}}{3}\);

b) \( cot (3x - 1) = -\sqrt{3}\); 

c) \( cos 2x . tan x = 0\);

d) \( sin 3x . cot x = 0\).

Giải

a)

Điều kiện \(x - 15^0\neq 90^0+k180^0\) hay \(x\neq 105^0+k.180^0.\)

\(tan (x - 15^0) = \frac{\sqrt{3}}{3}\Leftrightarrow tan(x-15^0)=tan30^0\), với điều kiện:

Ta có phương trình \(tan (x - 15^0) = tan30^0\)

\(\Leftrightarrow x - 15^0 = 30^0 + k180^0 , (k \in \mathbb{Z}).\)

\(\Leftrightarrow x = 45^0 + k180^0 , (k \in \mathbb{Z}).\) (thoả điều kiện)

Vậy nghiệm của phương trình là: \(x = 45^0 + k180^0 , (k \in \mathbb{Z}).\)

b)

\(cot (3x - 1) = -\sqrt{3}\), với điều kiện \(3x-1\neq k\pi (k\in \mathbb{Z})\) hay \(x\neq \frac{1+k \pi}{3}(k\in \mathbb{Z})\)

Ta có phương trình \(cot (3x - 1) = cot(-\frac{\pi }{6})\)

 \(\Leftrightarrow 3x-1=-\frac{\pi }{6}+k \pi, k\in \mathbb{Z}\)

\(\Leftrightarrow x=\frac{1}{3}-\frac{\pi }{18}+k.\frac{\pi }{3},(k\in \mathbb{Z})\) (thoả điều kiện)

Vậy nghiệm phương trình là \(x=\frac{1}{3}-\frac{\pi }{18}+k.\frac{\pi }{3},(k\in \mathbb{Z})\)

c)

\(cos2x.tanx=0 \Leftrightarrow \cos 2x.\frac{{\sin x}}{{\cos x}} = 0\), với điều kiện \(cosx\neq 0\)

\(\Leftrightarrow x\neq \frac{\pi }{2}+k\pi (k\in \mathbb{Z})\), ta có phương trình: \(cos2x . sinx = 0\)

\(\Leftrightarrow \bigg \lbrack\begin{matrix} cos2x=0\\ sinx=0 \end{matrix}\Leftrightarrow \bigg \lbrack\begin{matrix} 2x=\frac{\pi }{2}+k\pi \\ x=k\pi \end{matrix}(k\in \mathbb{Z})\)

\(\Leftrightarrow \bigg \lbrack\begin{matrix} x=\frac{\pi }{4}+k.\frac{\pi }{2}\\ x=k \pi \end{matrix}(k\in \mathbb{Z})\) (thoả điều kiện)

Vậy nghiệm phương trình là: \(x=\frac{\pi }{4}+k.\frac{\pi }{2}(k\in \mathbb{Z})\) hoặc \(x=k\pi (k\in \mathbb{Z})\)

d)

\(sin 3x . cot x = 0 \Leftrightarrow \sin 3x.\frac{{\cos x}}{{\sin x}} = 0\), với điều kiện \(sinx\neq 0\Leftrightarrow x\neq k.\pi (k\in \mathbb{Z})\)

Ta có phương trình \(sin3x.cos = 0\)

\(\Leftrightarrow \bigg \lbrack\begin{matrix} sin3x=0\\ cosx=0 \end{matrix}\Leftrightarrow \bigg \lbrack\begin{matrix} 3x=k\pi\\ x=\frac{\pi }{2}+k\pi \end{matrix} (k\in \mathbb{Z})\)

\(\Leftrightarrow \Bigg \lbrack\begin{matrix} x=\frac{k \pi}{3}\\ \\ x=\frac{\pi }{2}+k \pi \end{matrix}(k \in \mathbb{Z})\)

So sánh với điều kiện ta thấy khi \(k = 3m,m \in \mathbb{Z}\) thì \(x = m\pi  \Rightarrow \sin x = 0\) không thỏa điều kiện.

Vậy phương trình có nghiệm là: \(x=\frac{k \pi}{3}\) và \(x=\frac{\pi }{2}+k \pi (k \neq 3m, m\in \mathbb{Z})\)

Loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu



Các bài liên quan