Bài 5 trang 179 SGK Đại số và giải tích 11

Bình chọn:
3.3 trên 4 phiếu

Tìm số hạng không chứa a trong khai triển nhị thức

Bài 5. Tìm số hạng không chứa \(a\) trong khai triển nhị thức

Trả lời:

Ta có:

 \({({1 \over {{a^3}}} + {a^2})^{10}} = \sum\limits_{k = 0}^{10} {C_{10}^k} ({1 \over {{a^3}}})^{10-k}.{({a^2})^k} = \sum\limits_{k = 0}^{10} {C_{10}^k} {{{a^{2k}}} \over {{a^{30 - 3k}}}}\)

Số hạng không chứa \(a\) ứng với \(k\) thỏa mãn: \(2k = 30 – 3k ⇔ 5k = 30 ⇔ k = 6\)

Vậy số hạng không chứa \(a\) là \(C_{10}^6\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu



Các bài liên quan