Bài 5 trang 17 sgk hình học lớp 10


Bài 5. Gọi M và N lần lượt là trung điểm các cạnh AB và CD của tứ giác ABCD. Chứng minh rằng:

Bài 5. Gọi \(M\) và \(N\) lần lượt là trung điểm các cạnh \(AB\) và \(CD\) của tứ giác \(ABCD\). Chứng minh rằng:

                \(2\overrightarrow {MN}  = \overrightarrow {AC}  + \overrightarrow {BD}  = \overrightarrow {BC}  + \overrightarrow {AD} \)

Giải

\(N\) là trung điểm của \(CD\):

           \(2\overrightarrow {MN}  = \overrightarrow {MC}  + \overrightarrow {MD} \)      (1)

Theo quy tắc 3 điểm, ta có:

           \(\overrightarrow {MC}  = \overrightarrow {MA}  + \overrightarrow {AC} \)            (2)

           \(\overrightarrow {MD}  = \overrightarrow {MB}  + \overrightarrow {BD} \)          (3)

Từ (1), (2), (3) ta có:

    \(2\overrightarrow {MN}  = \overrightarrow {MA}  + \overrightarrow {AC}  + \overrightarrow {MB}  + \overrightarrow {BD}  \)

\(= \left( {\overrightarrow {MA}  + \overrightarrow {MB} } \right) + \overrightarrow {AC}  + \overrightarrow {BD}  = \overrightarrow {AC}  + \overrightarrow {BD} \)

Chứng minh tương tự, ta có: \(2\overrightarrow {MN}  = \overrightarrow {BC}  + \overrightarrow {AD} \)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 10 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 10, mọi lúc, mọi nơi cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu