Bài 49 trang 93 sgk toán 8 tập 1

Bình chọn:
4.9 trên 178 phiếu

Cho hình bình hành ABCD. Gọi I, K theo thứ tự là trung điểm của CD, AB. Đường chéo BD cắt AI, CK theo thứ tự ở M và N.

Bài 49. Cho hình bình hành ABCD. Gọi I, K theo thứ tự là trung điểm của CD, AB. Đường chéo BD cắt AI, CK theo thứ tự ở M và N. Chứng minh rằng:

a) AI // CK

b) DM = MN = NB

Bài giải:

a) Tứ giác ABCD có AB = CD, AD = BC nên là hình bình hành.

Tứ giác AICK có AK // IC, AK = IC nên là AICK hình bình hành.

Do đó AI // CK

b) ∆DCN có DI = IC, IM // CN.

(vì AI // CK) nên suy ra DM = MN   (1)

 ∆ABM có AK = KB và KN // AM ( vì AI // CK ) nên MN = NB.   (2)

Từ (1) và (2) suy ra DM = MN = NB

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 8 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan