Bài 47 trang 93 sgk toán 8 tập 1


Cho hình 72, trong đó ABCD là hình bình hành

Bài 47. Cho hình 72, trong đó \(ABCD\) là hình bình hành.

a) Chứng minh rằng \(AHCK\) là hình bình hành.

b) Gọi \(O\) là trung điểm của \(HK\). Chứng minh rằng ba điểm \(A, O, C\) thẳng hàng

Bài giải:

a) Xét hai tam giác vuông \(AHD\) và \(CKB\) có:

          \( AD = CB\) (vì \(ABCD\) là hình bình hành)

         \(\widehat {ADH} = \widehat {CBK}\) (hai góc ở vị trí so le trong)

Suy ra \(∆AHD =  ∆CKB\) (cạnh huyền- góc nhọn)

Suy ra \(AH = CK\)

\(AH\bot BD\) và \(CK\bot BD\) suy ra \(AH//CK\)

Tứ giác \(AHCK\) có \(AH//CK\) và \(AH = CK\) nên là hình bình hành (theo dấu hiệu nhận biết hình bình hành),

b) Xét hình bình hành \(AHCK\) có \(O\) là trung điểm của \(HK\), do đó \(O\) là giao điểm của hai đường chéo \(AC\) và \(HK\) của hình bình hành.

Hay \(A,O,C\) thẳng hàng

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 8 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu