Bài 47 trang 93 sgk toán 8 tập 1


Cho hình 72, trong đó ABCD là hình bình hành

47. Cho hình 72, trong đó ABCD là hình bình hành.

a) Chứng minh rằng AHCK là hình bình hành.

b) Gọi O là trung điểm của HK. Chứng minh rằng ba điểm A, O, C thẳng hàng

Bài giải:

a) Hai tam giác vuông AHD và CKD có:

           AD = CB (gt)

           (so le trong)

Nên  ∆AHD =  ∆CKB (cạnh huyền, góc nhọn)

Suy ra AH = CK

Tứ giác AHCK có AH Vuông góc với DB và CK cũng vuông góc với DB. Nên AH // CK, Mà theo chứng mình trên AH = CK nên là hình bình hành,

b) Xét hình bình hành AHCK, trung điểm O của đường chéo của hình bình hành). Do đó ba điểm A, O, C thẳng hàng.

>>>>> Bí kíp luyện thi 9 vào 10 các môn Toán, Văn, Anh, Lý, Hóa năm 2018 bởi các Thầy Cô Top 1 trên cả nước