Bài 47 trang 215 SGK Đại số 10 Nâng cao

Bình chọn:
3.7 trên 3 phiếu

Chứng minh rồi dùng máy tính bỏ túi hoặc bảng số để kiểm nghiệm lại gần đúng kết quả.

Chứng minh rồi dùng máy tính bỏ túi hoặc bảng số để kiểm nghiệm lại gần đúng kết quả.

a) \(\cos {10^0}\cos {50^0}\cos {70^0} = \sin {20^0}\sin {40^0}\sin {80^0} = {{\sqrt 3 } \over 8}\)

b) \(\sin {10^0}\sin {50^0}\sin {70^0} = \cos {20^0}\cos {40^0}\cos {80^0} = {1 \over 8}\)

Đáp án

a) Ta có:

\(\eqalign{
& \cos {10^0}\cos {50^0}\cos {70^0}\cr& = \cos {10^0}{\rm{[}}{1 \over 2}(cos{120^0} + \cos {20^0}){\rm{]}} \cr
& = - {1 \over 4}\cos {10^0} + {1 \over 2}\cos {10^0}\cos {20^0} \cr
& = - {1 \over 4}\cos {10^0} + {1 \over 4}(cos{30^0} + \cos {10^0})\cr& = {1 \over 4}\cos {30^0} = {{\sqrt 3 } \over 8} \cr
& \sin {20^0}\sin {40^0}\sin {80^0} = \cos {70^0}\cos {50^0}\cos {10^0} \cr&= {{\sqrt 3 } \over 8} \cr} \)

b) Ta có:

\(\eqalign{
& \sin {10^0}\sin {50^0}\sin {70^0}\cr& = {1 \over 2}(cos{20^0} - \cos {120^0})\sin {10^0} \cr
& = {1 \over 4}\sin {10^0} + {1 \over 2}\sin {10^0}\cos {20^0} \cr
& = {1 \over 4}\sin {10^0} + {1 \over 4}(\sin {30^0} - \sin {10^0}) \cr&= {1 \over 4}\sin {30^0} = {1 \over 8} \cr
& \cos {20^0}\cos {40^0}\cos {80^0} = \sin {10^0}\sin {50^0}\sin {70^0} = {1 \over 8} \cr} \)

Loigiaihay.com

Các bài liên quan