Bài 46 trang 59 sgk Toán 9 tập 2

Bình chọn:
4.8 trên 18 phiếu

Một mảnh đất hình chữ nhật có diện tích

Bài 46. Một mảnh đất hình chữ nhật có diện tích \(240\) m2. Nếu tăng chiều rộng \(3\) m và giảm chiều dài \(4\) m thì diện tích mảnh đất không đổi. Tính kích thước của mảnh đất.

Bài giải:

Gọi chiều rộng của mảnh đất là \(x\) (m), \(x > 0\).

Vì diện tích của mảnh đất bằng \(240\) m2 nên chiều dài là: \(\frac{240}{x}\) (m)

Nếu tăng chiều rộng \(3\)m và giảm chiều dài \(4\)m thì mảnh đất mới có chiều rộng là \(x + 3\) (m),

chiều dài là (\(\frac{240}{x}- 4)\) (m) và diện tích là:

\((x + 3)(\frac{240}{x}\) - 4) ( m2 )

Theo đầu bài ta có phương trình: \((x + 3)(\frac{240}{x}- 4) = 240\)

Từ phương trình này suy ra:

\(-4x^2 – 12x + 240x + 720 = 240x\)

hay \(x^2 + 3x – 180 = 0\)

Giải phương trình: \(\Delta = 3^2 + 720 = 729\), \(\sqrt{\Delta} = 27\)

\({x_1} = 12, {x_2} = -15\)

Vì \(x > 0\) nên \({x_2} = -15\) không thỏa mãn điều kiện của ẩn. Do đó chiều rộng là \(12\)m, chiều dài là: \(240 : 12 = 20\) (m)

Vậy mảnh đất có chiều rộng là \(12\)m, chiều dài là \(20\)m.

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan