Bài 46 trang 133 sgk toán 8 tập 1

Bình chọn:
4.1 trên 17 phiếu

Cho tam giác ABC. Gọi M, N là các trung điểm tương ứng của AC, BC. Chứng minh rằng diện tích của hình thang ABNM bằng 3/4 diện tích của tam giác ABC.

Cho tam giác ABC. Gọi M, N là các trung điểm tương ứng của AC, BC. Chứng minh rằng diện tích của hình thang ABNM bằng  diện tích của tam giác ABC.

Hướng dẫn làm bài:                                

 

Vẽ hai trung tuyến AN, BM của ∆ABC. Ta có:

 \({S_{ABN}} = {1 \over 2}{S_{ABC}}\)

(có cùng đường cao từ đỉnh A, đáy  \(BN = {1 \over 2}BC)\)

 \({S_{AMN}} = {S_{MNC}}\) (có cùn đường cao từ đỉnh N, đáy AM = MC).

Suy ra  \({S_{AMN}} = {S_{MNC}} = {1 \over 2}{S_{ANC}} = {1 \over 4}{S_{ABC}}\)

Vậy  \({S_{ABN}} + {S_{AMN}} = {1 \over 2}{S_{ABC}} + {1 \over 4}{S_{ABC}} = {3 \over 4}{S_{ABC}}\)

Tức là  \({S_{ABMN}} = {3 \over 4}{S_{ABC}}\)

Đã có lời giải Sách bài tập - Toán lớp 8 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan