Bài 43 trang 125 - Sách giáo khoa toán 7 tập 1


Bài 43. Cho góc xOy khác góc bẹt. Lấy các điểm A,B thuộc tia Ox sao cho OA

Bài 43. Cho góc xOy khác góc bẹt. Lấy các điểm A,B thuộc tia Ox sao cho OA<OB.

Lấy các điểm C,D thuộc tia Oy sao cho OC=OA, OD=OB. Gọi E là giao điểm của AD và BC.

Chứng minh rằng:

a) AD=BC;

b) ∆EAB=∆ECD;

c )OE là tia phân giác của xOy.

 Giải:

a) ∆OAD và ∆OCB có: OA= OC(gt)

\(\widehat{AOD}\)=\(\widehat{COB}\)(=\(\widehat{A}\))

OD=OB(gt)

Nên ∆OAD=∆OCB(c.g.c)

suy ra AD=BC.

b) ∆OAD=∆OCB(cmt)

Suy ra: \(\widehat{D}\)= \(\widehat{B}\)

 \(\widehat{A_{1}}\)=\(\widehat{C _{1}}\) => \(\widehat{A _{2}}\)=\(\widehat{ C _{2}}\)

Do đó ∆AOE = ∆OCE(c .c.c)

suy ra: \(\widehat{ OAE}\)=\(\widehat{ COE}\)

vậy OE là tia phân giác của xOy.

b) ∆AEB= ∆CED(câu b) => EA=EC.

∆OAE và ∆OCE có: OA=OC(gt)

EA=EC(cmt)

OE là cạnh chung.

Nên ∆OAE=∆(OCE)(c .c.c)

suy ra: \(\widehat{ AOE}\)=\(\widehat{ C OE}\)

vậy OE là tia phân giác của góc xOy.

Đã có lời giải Sách bài tập - Toán lớp 7 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 7, mọi lúc, mọi nơi môn Toán, Văn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu