Bài 41 trang 83 sgk Toán lớp 9 tập 2


Bài 41. Qua điểm A nằm bên ngoài đường tròn (O)

Bài 41. Qua điểm \(A\) nằm bên ngoài đường tròn \((O)\) vẽ hai cát tuyến \(ABC\) và \(AMN\) sao cho hai đường thẳng \(BN\) và \(CM\) cắt nhau tại một điểm \(S\) nằm bên trong đường tròn.

Chứng minh:

                     \(\widehat A + \widehat {B{\rm{S}}M} = 2\widehat {CMN}\)

Hướng dẫn giải:

Ta có : 

\(\widehat{A}\)+\(\widehat {BSM} = 2\widehat {CMN}\)

\(\widehat A\)=\(\frac{sđ\overparen{CN}-sđ\overparen{BM}}{2}\) (góc \(A\) là góc ngoài \((0)\))  (1)

\(\widehat {BSM}\)=\(\frac{sđ\overparen{CN}+sđ\overparen{BM}}{2}\) (góc \(S\) là góc trong \((0)\))  (2)

\(\widehat {CMN}\)=\(\frac{sđ\overparen{CN}}{2}\)

\(\Leftrightarrow\) \(2\widehat {CMN}\)=\(sđ\overparen{CN}\).  (3)

Cộng (1) và(2) theo vế với vế:

\(\widehat{A}\)+\(\widehat {BSM}\) =\(\frac{2sđ\overparen{CN}+(sđ\overparen{BM}-sđ\overparen{BM)}}{2}\)=\(\overparen{CN}\)

Từ (3) và (4) ta được:  \(\widehat A + \widehat {B{\rm{S}}M} = 2\widehat {CMN}\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu