Bài 40 trang 53 sách giáo khoa toán 8 tập 1

Bình chọn:
4.4 trên 34 phiếu

Bài 40. Rút gọn biểu thức sau theo hai cách (sử dụng và không sử dụng tính chất phân phối của phép nhân đối với phép cộng:

Bài 40. Rút gọn biếu thức sau theo hai cách (sử dụng và không sử dụng tính chất phân phối của phép nhân đối với phép cộng:

                         \( \frac{x-1}{x}\).(x2 + x+ 1 + \( \frac{x^{3}}{x-1}\)).

Hướng dẫn giải:

Áp dụng tính phân phối: 

 \( \frac{x-1}{x}\).(x2 + x+ 1 + \( \frac{x^{3}}{x-1}\)) \( =\frac{(x-1)(x^{2}+x+1)}{x}+\frac{(x-1)x^{3}}{x(x-1)}\)

                                      \( =\frac{x^{3}-1}{x}+\frac{x^{3}}{x}=\frac{x^{3}-1+x^{3}}{x}=\frac{2x^{3}-1}{x}\)

Không áp dụng tính phân phối:

\( \frac{x-1}{x}\).(x2 + x+ 1 + \( \frac{x^{3}}{x-1}\)) \( =\frac{x-1}{x}.(\frac{(x^{2}+x+1)(x-1)}{x-1}+\frac{x^{3}}{x-1})\)

\( =\frac{x-1}{x}.(\frac{x^{3}-1}{x-1}+\frac{x^{3}}{x-1})=\frac{x-1}{x}.\frac{x^{3}-1+x^{3}}{x-1}\)

                                     \( =\frac{(x-1)(2x^{3}-1)}{x(x-1)}=\frac{2x^{3}-1}{x}\)

Đã có lời giải Sách bài tập - Toán lớp 8 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan