Bài 4 trang 58 sgk đại số và giải tích 11

Bình chọn:
4.6 trên 7 phiếu

Tìm số hạng không chứa x trong khai triển

Bài 4. Tìm số hạng không chứa x trong khai triển của \({\left( {{x^3} + {1 \over x}} \right)^8}\)

Bài giải:

Ta có: \({\left( {{x^3} +4 {1 \over x}} \right)^8} = \sum\limits_{k = 0}^8 {C_8^k} .{x^{3.(8 - k)}}{\left( {{1 \over x}} \right)^k} = \sum\limits_{k = 0}^8 {C_8^k} .{x^{24 - 4k}}\)

Trong tổng \(\sum\limits_{k = 0}^8 {C_8^k} .{x^{24 - 4k}}\) số hạng không chứa \(x\) khi và chỉ khi

\(\left\{\begin{matrix} 24 - 4k = 0 & & \\ 0\leq k \leq 8& & \end{matrix}\right.\) \(⇔ k = 6\).

Vậy số hạng không chứa \(x\) trong khai triển (theo công thức nhị thức Niu - Tơn) của biểu thức đã cho là \({C^6}_8 = {\rm{ }}28\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu



Các bài liên quan