Bài 4 trang 29 sgk giải tích 11


Bài 4. Giải phương trình

Bài tập :

Bài 4. Giải phương trình \({{2\cos 2x} \over {1 - \sin 2x}} = 0\)

Giải:

 Điều kiện \(sin2x\neq 1\Leftrightarrow 2x\neq \frac{\pi }{2}+k2 \pi\Leftrightarrow x\neq \frac{\pi }{4}+k \pi(k\in \mathbb{Z})\)

\({{2\cos 2x} \over {1 - \sin 2x}} = 0\Leftrightarrow 2cos2x=0\) 

Phương trình đã cho tương đương với:

\(cos2x=0 \Leftrightarrow \Bigg \lbrack\begin{matrix} 2x=\frac{\pi }{2}+k2\pi\\ \\ 2x=-\frac{\pi }{2}+k2\pi \end{matrix}\)

\(\Leftrightarrow \Bigg \lbrack\begin{matrix} x=\frac{\pi }{4}+k\pi \ \ (loai)\\ \\ x=-\frac{\pi }{4}+k\pi (k\in \mathbb{Z}) \end{matrix}\)

Vậy nghiệm phương trình là \(x=-\frac{\pi }{4}+k\pi (k\in \mathbb{Z})\).

Loigiaihay.com

Đã có lời giải Sách bài tập Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>>>> Học tốt lớp 11 các môn Toán, Lý, Anh, Hóa năm 2018 bởi các Thầy Cô uy tín, nổi tiếng học hiệu quả, dễ hiểu