Bài 4 trang 169 sách giáo khoa Đại số và Giải tích 11


4. Tìm đạo hàm của các hàm số sau:

Bài 4. Tìm đạo hàm của các hàm số sau:

a) \(y = \left( {9 - 2x} \right)(2{x^3} - 9{x^2} + 1)\);

b) \(y =  \left ( 6\sqrt{x} -\frac{1}{x^{2}}\right )(7x -3)\);

c) \(y = (x -2)\sqrt{(x^2+1)}\);

d) \(y = tan^2x +cotx^2\);

e) \(y = cos\frac{x}{1+x}\).

Lời giải:

a) \(y' = \left( {9 - 2x} \right)'(2{x^3} - 9{x^2} + 1) + \left( {9 - 2x} \right)(2{x^3} - 9{x^2} + 1)'\)

\(=  - 2(2{x^3} - 9{x^2} + 1) + \left( {9 - 2x} \right)(6{x^2} - 18x) \)

\(= - 16{x^3} + 108{x^2} - 162x - 2\).

b) \(y' = \left ( 6\sqrt{x} -\frac{1}{x^{2}}\right )'.(7x -3) +\left ( 6\sqrt{x} -\frac{1}{x^{2}}\right )(7x -3)'\)

\(=  \left ( \frac{3}{\sqrt{x}} +\frac{2}{x^{3}}\right )(7x -3) +7 \left ( 6\sqrt{x} -\frac{1}{x^{2}}\right )\).

c) \(y' = (x -2)'\sqrt{(x^2+1)} + (x -2)\sqrt {(x^2+1)}' \)

\(= \sqrt {(x^2+1)} + (x -2)\frac{\left ( x^{2}+1 \right )'}{2\sqrt{x^{2}+1}}\) 

\(= \sqrt {(x^2+1)} + (x -2) \frac{2x}{2\sqrt{x^{2}+1}}\)

\( = \sqrt {(x^2+1)} + \frac{x^{2}-2x}{\sqrt{x^{2}+1}}\) = \( \frac{2x^{2}-2x+1}{\sqrt{x^{2}+1}}\).

d) \(y' = 2tanx.(tanx)' - (x^2)' \left ( -\frac{1}{sin^{2}x^{2}} \right )\) = \( \frac{2tanx}{cos^{2}x}+\frac{2x}{sin^{2}x^{2}}\).

e) \(y' =  \left ( \frac{1}{1+x} \right )'sin \frac{x}{1+x}\) = \( -\frac{1}{(1+x)^{2}}sin \frac{x}{1+x}\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu